
Accountability in a Computerized Society 1

2
Accountability in a Computerized Society
Helen Nissenbaum

Abstract: This essay warns of eroding accountability in computerized societies. It argues
that assumptions about computing and features of situations in which computers are
produced create barriers to accountability. Drawing on philosophical analyses of moral
blame and responsibility, four barriers are identified: (1) the problem of many hands, (2)
the problem of bugs, (3) blaming the computer, and (4) software ownership without
liability. The paper concludes with ideas on how to reverse this trend.

If a builder has built a house for a man and has not made his work sound, and the
house which he has built has fallen down and so caused the death of the householder,
that builder shall be put to death.

If it destroys property, he shall replace anything that it has destroyed; and, because he
has not made sound the house which he has built and it has fallen down, he shall
rebuild the house which has fallen down from his own property.

If a builder has built a house for a man and does not make his work perfect and a wall
bulges, that builder shall put that wall into sound condition at his own cost.

—Laws of Hammu-rabi [229, 232, 233]1, circa 2027 B.C.

Computing is an ongoing source of change in the way we conduct our lives. For the most
part we judge these changes to be beneficial, but we also recognize that imperfections in
the technology can, in significant measure, expose us to unexpected outcomes as well as
to harms and risks. Because the use of computing technology is so widespread these
impacts are worrisome not only because harms can be severe, but because they pervade
and threaten almost every sphere of public and private life. Lives and well-being are
increasingly dependent on computerized life-critical systems that control aircraft (fly-by-
wire), spacecraft, motor cars, military equipment, communications devices and more.
Quality of life is also at stake in the enormous array of information systems,
communications networks, bureaucratic infrastructures of governments, corporations, and
high finance, as well as everyday conveniences such as personal computers, telephones,
microwaves and toys that are controlled and supported by computers.

The extensive presence of computing in these many spheres of life suggests two related
concerns. The one is a concern with achieving a suitable degree of reliability and safety
for these systems so as to minimize risks and harms; the other is a concern with
entrenching and maintaining in those sectors of society that produce and purvey
computing technologies a robust culture of accountability, or answerability, for their
impacts. The first of these two has, in recent years, achieved increasing recognition

among prominent members of the computer community.1 They question whether many of
the systems in use are sufficiently sound for the uses to which they are put. Citing cases

1For example, Joseph Weizenbaum, and more recently Nancy Leveson, Peter Neumann, David Parnas, and others.

2 Helen Nissenbaum

of failure and poor programming practices, they appeal to the computer community,2

corporate producers, and government regulators, to pay more heed to system safety and
reliability in order to reduce harms and risks (Borning, 1987; Leveson, 1986; Leveson &
Turner, 1993; Littlewood & Strigini, 1992; Neumann; Parnas, Schouwen, & Kwan, 1990)
arguing that lives, well-being, and quality-of-life, are vulnerable to poor system design
and the all too likely occurrence of failure.

But it is upon the second of these concerns, the concern for accountability, that this
paper will focus. In the same way that experts within the computer community have
exposed the critical need to improve standards of reliability for computer systems, this
paper urges attention to the neglected status of accountability for the impacts of
computing, specifically for the harms and risks of faulty and malfunctioning systems.
Thus, while our vulnerability to system failure and risk argues for greater attention to
system safety, reliability, and sound design, and calls for the development of technical
strategies to achieve them, it also underscores the need for a robust tradition of
accountability for failures, risks, and harm that do occur. A culture of accountability is
particularly important for a technology still struggling with standards of reliability
because it means that even in cases where things go awry, we are assured of
answerability. However, just the opposite is occurring. This paper argues that conditions
under which computer systems are commonly developed and deployed, coupled with
popular conceptions about the nature, capacities, and limitations of computing, contribute
in significant measure to an obscuring of lines of accountability. Unless we address these
conditions and conceptions, we will see a disturbing correlation – increased
computerization, on the one hand, with a decline in accountability, on the other.

A strong culture of accountability is worth pursuing for a number of reasons. For some,
a developed sense of responsibility is a good in its own right, a virtue to be encouraged.
Our social policies should reflect this value appropriately by expecting people to be
accountable for their actions. For others, accountability is valued because of its
consequences for social welfare. Firstly, holding people accountable for the harms or
risks they bring about provides strong motivation for trying to prevent or minimize them.
Accountability can therefore be a powerful tool for motivating better practices, and
consequently more reliable and trustworthy systems. A general culture of accountability
should encourage answerability not only for the life-critical systems that cause or risk
grave injuries, damage infrastructure, and cause large monetary losses, but even for the
malfunctions that cause individual losses of time, convenience, and contentment.
Secondly, maintaining clear lines of accountability means that in the event of harm
through failure, we have a reasonable starting point for assigning just punishment as well
as, where necessary, compensation for victims.

For the remainder of the paper I explain more fully the conditions in which computer
systems are commonly produced and describe common assumptions about the
capabilities and limitations of computing, showing how both contribute toward an erosion
and obscuring of accountability. Four of these, which I henceforth call “the four barriers
to accountability,” will be the focus of most of the discussion. In identifying the barriers I
hope at the same time to convince readers that as long as we fail to recognize and do
something about these barriers to accountability, assigning responsibility for the impacts
of computing will continue to be problematic in the many spheres of life that fall under its
control. And unless we pursue means for reversing this erosion of accountability, there

2Michael Davis, in commenting on this paper, points out that in certain contexts, for example automobile accidents, our manner of

speaking allows for “accidents” for which we may yet blame someone.

Accountability in a Computerized Society 3

will be significant numbers of harms and risks for which no one is answerable and
about which nothing is done. This will mean

that computers may be “out of control”3 in an important and disturbing way. I conclude
the paper with brief remarks on how we might overcome the barriers and restore
accountability.

Accountability, Blame, Responsibility – Conceptual framework

The central thesis of this paper, that increasing computerization may come at the cost of
accountability, rests on an intuitive understanding of accountability closely akin to
“answerability.” The following story captures its core in a setting that, I predict, will have
a ring of familiarity to most readers.

Imagine a teacher standing before her sixth-grade class demanding to know who shot a
spit-ball in her ear. She threatens punishment for the whole class if someone does not
step forward. Fidgety students avoid her stern gaze, as a boy in the back row slowly
raises his hand.

This raising of his hand wherein the boy answers for his action signifies accountability.
From the story alone, we do not know whether he shot at the teacher intentionally or
merely missed his true target, whether he acted alone or under goading from classmates,
or even whether the spit-ball was in protest for an unreasonable action taken by the
teacher. While these factors may be relevant to determining a just response to the boy’s
action, we can say that the boy, in responding to the teacher’s demand for an answer to
who shot the spit-ball, has taken an important first step toward fulfilling the valuable
social obligation of accountability. In this story, the boy in the back row has answered for,
been accountable for, his action; in real life there can be conditions that obscure
accountability.

For a deeper understanding of the barriers to accountability in a computerized society
and the conditions that foster them, it is necessary to move beyond an intuitive grasp and
to draw on ideas from philosophical and legal inquiry into moral responsibility and the
cluster of interrelated concepts of liability, blame and accountability. Over the many years
that these concepts have been discussed and analyzed, both by those whose interest is
theoretical in nature and those whose interest is more practical (Hammu-rabi’s four-
thousand year old legal code is an early example), many analyses have been put forth, and
many shadings of meaning have been discovered and described.

Emerging from this tradition, contemporary work by Joel Feinberg on moral blame
provides a framework for this paper’s inquiry (Feinberg, 1985). Feinberg proposes a set

of conditions under which an individual is morally blameworthy for a given harm.4 Fault
and causation are key conditions. Accordingly, a person is morally blameworthy for a
harm if: (1) his or her actions caused the harm, or constituted a significant causal factor in

bringing about the harm; and (2) his or her actions were “faulty.”5 Feinberg develops the

3The community of people who dedicate a significant proportion of their time and energy to building computer and computerized

systems, and to those engaged in the science, engineering, design, and documentation of computing.
4Apparently this phenomenon is firmly rooted. In a study by Friedman and Millett, interviews with male undergraduate computer

science majors found that a majority attributed aspects of agency to computers and significant numbers held computers morally

responsible for errors (Friedman & Millett, 1997).
5Compare this to the judge’s finding in the “Red Hook Murder” (Fried, 1993). Even though it was almost certainly known which one

of the three accused pulled the trigger, the court viewed all three defendants to be equal and “deadly conspirators” in the death of the

victim Patrick Daley.

4 Helen Nissenbaum

idea of faulty actions to cover actions that are guided by faulty decisions or intentions.
This includes actions performed with an intention to hurt someone and actions for which
someone fails to reckon adequately with harmful consequences. Included in the second
group are reckless and negligent actions. We judge an action reckless if a person engages
in it even though he foresees harm as its likely consequence but does nothing to prevent
it; we judge it negligent, if he carelessly does not consider probable harmful
consequences.

Applying Feinberg’s framework to some examples, consider the case of a person who
has intentionally installed a virus on someone’s computer which causes extensive damage
to files. This person is blameworthy because her intentional actions were causally
responsible for the damage. In another case, one that actually occurred, Robert Morris,
then a graduate student in computer science at Cornell University, whose Internet Worm
caused major upheaval on the internet and infiltrated thousands of connected computers,
was held blameworthy, even though the extensive damage was the consequence of a bug
in his code and not directly intended. Critics judged him reckless because they contended

that someone with Morris’s degree of expertise ought to have foreseen this possibility.6

Although moral blame is not identical to accountability, an important correspondence
between the two makes the analysis of the former relevant to the study of the latter. An
important set of cases in which one may reasonably expect accountability for a harm is
that in which an analysis points to an individual (or group of individuals) who are morally

blameworthy for it.7 In these cases at least, moral blameworthiness provides a reasonable
standard for answerability and, accordingly, Feinberg’s conditions can be used to identify
cases in which one would reasonably expect, or judge, that there ought to be
accountability. The four barriers, explained in the sections below, are systematic features
of situations in which we would reasonably expect accountability but for which
accountability is obscured. For many situations of these types (though not all) the
simplified version of Feinberg’s analysis has helped bring into focus the source of
breakdown.

The Problem of Many Hands8

Most computer systems in use today are the products not of single programmers working
in isolation but of groups or organizations, typically corporations. These groups, which
frequently bring together teams of individuals with a diverse range of skills and varying
degrees of expertise, might include designers, engineers, programmers, writers,
psychologists, graphic artists, managers, and salespeople. Consequently, when a system
malfunctions and gives rise to harm, the task of assigning responsibility – the problem of
identifying who is accountable – is exacerbated and obscured. Responsibility,
characteristically understood and traditionally analyzed in terms of a single individual,
does not easily generalize to collective action. In other words, while the simplest quest for
accountability would direct us in search of “the one” who must step forward (for
example, the boy in the back row answering for the spit-ball), collective action presents a

6This prediction turned out, in fact, to be inaccurate, but this is not relevant to our central concern.
7The issue of licensing software producers remains controversial.
8Dennis Thompson points out that common usage of the two terms may not track this distincinton as precisely as I suggest. For

purposes of this discussion I hope to hold the issue of terminlogoy at bay and focus on the underlying ideas and their relevant

distinctiveness.

Accountability in a Computerized Society 5

challenge. The analysis of blame, in terms of cause and fault, can help to clarify how in
cases of collective action accountability can be lost, or at least, obscured.

Where a mishap is the work of “many hands,” it may not be obvious who is to blame
because frequently its most salient and immediate causal antecedents do not converge
with its locus of decision making. The conditions for blame, therefore, are not clearly
satisfied in a way normally satisfied when a single individual is held blameworthy for a
harm. Indeed, some cynics argue that institutional structures are designed in this way
precisely to avoid accountability. Furthermore, with the collective actions characteristic
of corporate and government hierarchies, decisions and causes themselves are fractured.
Team action, the endeavor of many individuals working together, creates a product which
in turn causally interacts with the life and well-being of an end user. Boards of directors,
task forces, or committees issue joint decisions, and on the occasions where these
decisions are not universally approved by all their members but are the result of majority
vote, we are left with the further puzzle of how to attribute responsibility. When high-
level decisions work their way down from boards of directors to managers, from mangers
to employees, ultimately translating into actions and consequences, the lines that bind a
problem to its source may be convoluted and faint. And as a consequence the connection
between an outcome and the one who is accountable for it is obscured. This obscuring of
accountability can come about in different ways. In some cases, it may be the result of
intentional planning, a conscious means applied by the leaders of an organization to avoid
responsibility for negative outcomes, or it may be an unintended consequence of a
hierarchical management in which individuals with the greatest decision-making powers
are only distantly related to the causal outcome of their decisions. Whatever the reason,
the upshot is that victims and those who represent them, are left without knowing at
whom to point a finger. It may not be clear even to the members of the collective itself
who is accountable. The problem of many hands is not unique to computing but plagues
other technologies, big business, government, and the military (De George, 1991;
Feinberg, 1970; Ladd, 1989; Thompson, 1987; Velasquez, 1991).

Computing is particularly vulnerable to the obstacles of many hands. First, as noted
earlier, most software systems in use are produced in institutional settings, including
small and middle-sized software development companies, large corporations, government
agencies and contractors, and educational institutions. Second, computer systems
themselves, usually not monolithic, are constructed out of segments or modules. Each
module itself may be the work of a team of individuals. Some systems may also include
code from earlier versions, while others borrow code from different systems entirely,
even some that were created by other producers. When systems grow in this way,
sometimes reaching huge and complex proportions, there may be no single individual
who grasps the whole system or keeps track of all the individuals who have contributed to
its various components (Johnson & Mulvey, 1993; Weizenbaum, 1972). Third, many
systems being developed and already in use operate on top of other systems (such as
intermediate level and special function programs and operating systems). Not only may
these systems be unreliable, but there may merely be unforeseen incompatibilities

between them.9 Fourth, performance in a wide array of mundane and specialized
computer-controlled machines – from rocket ships to refrigerators – depends on the
symbiotic relationship of machine with computer system. When things go wrong, as

9Here and elsewhere I should not be understood as suggesting that the four barriers give a complete explanation of failures in

accountability.

6 Helen Nissenbaum

shown below, it may be unclear whether the fault lies with the machine or with the
computer system.

The case of the Therac-25, a computer-controlled radiation treatment machine, that

massively overdosed patients in six known incidents10 provides a striking example of the
way many hands can obscure accountability. In the two-year period from 1985 to 1987,
overdoses administered by the Therac-25 caused severe radiation burns, which in turn,
caused death in three cases and irreversible injuries (one minor, two very serious) in the
other three. Built by Atomic Energy of Canada Limited (AECL), Therac-25 was the
further development in a line of medical linear accelerators which destroy cancerous
tumors by irradiating them with accelerated electrons and X-ray photons. Computer
controls were far more prominent in the Therac-25 both because the machine had been
designed from the ground up with computer controls in mind and also because the safety
of the system as a whole was largely left to software. Whereas earlier models included
hardware safety mechanisms and interlocks, designers of the Therac-25 did not duplicate
software safety mechanisms with hardware equivalents.

After many months of study and trial-and-error testing, the origin of the malfunction
was traced not to a single source, but to numerous faults, which included at least two

significant software coding errors (“bugs”) and a faulty microswitch.11 The impact of
these faults was exacerbated by the absence of hardware interlocks, obscure error
messages, inadequate testing and quality assurance, exaggerated claims about the
reliability of the system in AECL’s safety analysis, and in at least two cases, negligence
on the parts of the hospitals where treatment was administered. Aside from the important
lessons in safety engineering that the Therac-25 case provides, it offers a lesson in
accountability – or rather, the breakdown of accountability due to “many hands.”

In cases like Therac-25, instead of identifying a single individual whose faulty actions
caused the injuries, we find we must systematically unravel a messy web of interrelated
causes and decisions. Even when we may safely rule out intentional wrongdoing it is not
easy to pinpoint causal agents who were, at the same time, negligent or reckless. As a
result, we might be forced to conclude that the mishaps were merely accidental in the
sense that no one can reasonably be held responsible, or to blame, for them. While a full
understanding of the Therac-25 case would demand a more thorough study of the details
than I can manage here, the sketch that follows is intended to show that though the
conditions of many hands might indeed obscure accountability, they do not imply that
answerability can be foregone.

Consider the many whose actions constituted causal antecedents of the Therac-25
injuries and in some cases contributed significantly to the existence and character of the
machine. From AECL, we have designers, software and safety engineers, programmers,
machinists, and corporate executives; from the clinics, we have administrators,
physicians, physicists, and machine technicians. Take for example, those most
proximately connected to the harm, the machine technicians who activated the Therac-25
by entering doses and pushing buttons. In one of the most chilling anecdotes associated
with the Therac-25 incident, a machine technician is supposed to have responded to the
agonized cries of a patient by flatly denying that it was possible that he had been burned.
Should the blame be laid at her feet?

10This case is drawn from David McCullough’s book about the building of the Brooklyn Bridge (McCullough, 1972).
11B. Friedman and P. Kahn in this volume argue that systems designers play an important role in preventing the illusion of the

computer as a moral agent. They argue that certain prevalent design features, such as anthropomorphizing a system, delegating

decision making to it, and delegating instruction to it diminish a user’s sense of agency and responsibility (Friedman & Kahn, 1997).

Accountability in a Computerized Society 7

Except for specific incidents like the one involving the technician who denied a
patient’s screams of agony, accountability for the Therac-25 does not rest with the
machine technicians because by and large they were not at fault in any way relevant to the
harms and because the control they exercised over the machine’s function was restricted
to a highly limited spectrum of possibilities. By contrast, according to Leveson and
Turner’s discussion, there is clear evidence of inadequate software engineering, testing
and risk assessment. For example, the safety analysis was faulty in that it systematically
overestimated the system’s reliability and evidently did not consider the role software
failure could play in derailing the system as a whole. Moreover, computer code from
earlier Therac models, used in the Therac-25 system, was assumed unproblematic
because no similar malfunction had surfaced in these models. However, further
investigation showed that while the problem had been present in those systems, it had
simply not surfaced because earlier models had included mechanical interlocks which
would override software commands leading to fatal levels of radiation. The Therac-25 did
not include these mechanical interlocks.

There is also evidence of a failure in the extent of corporate response to the signs of a
serious problem. Early response to reports of problems were particularly lackluster.
AECL was slow to react to requests to check the machine, understand the problem, or to
remediate (for example by installing an independent hardware safety system). Even after
a patient filed a lawsuit in 1985 citing hospital, manufacturer, and service organization as
responsible for her injuries, AECL’s follow up was negligible. For example, no special
effort was made to inform other clinics operating Therac-25 machines about the mishaps.
Because the lawsuit was settled out of court, we do not learn how the law would have
attributed liability.

Even Leveson and Turner, whose detailed analysis of the Therac-25 mishaps sheds
light on both the technical as well as the procedural aspects of the case, hold back on the
question of accountability. They refer to the malfunctions and injuries as “accidents” and
remark that they do not wish “to criticize the manufacturer of the equipment or anyone
else” (Leveson & Turner, 1993). I mention this not as a strong critique of their work,
because after all their central concern is unraveling the technical and design flaws in the
Therac-25, but to raise the following point. Although a complex network of causes and
decisions, typical of situations in which many hands operate, may obscure accountability,
we ought not conclude therefore that the harms were mere accidents. I have suggested
that a number of individuals ought to have been answerable (though not in equal
measure), from the machine operator who denied the possibility of burning to the
software engineers to quality assurance personnel and to corporate executives.
Determining their degree of responsibility would require that we investigate more fully
their degree of causal responsibility, control, and fault. By preferring to view the incidents

as accidents,12 however, we may effectively be accepting them as agentless mishaps,
yielding to the smoke-screen of collective action and to a further erosion of
accountability.

The general lesson to be drawn from the case of the Therac-25 is that many hands
obscured accountability by diminishing in key individuals a sense of responsibility for the
mishaps. By contrast, a suitably placed individual (or several) ought to have stepped
forward and assumed responsibility for the malfunction and harms. Instead, for two years,
the problem bounced back and forth between clinics, manufacturer and various
government oversight agencies before concrete and decisive steps were taken. In

12For an exception see Samuelson’s recent discussion of liability for defective information (Samuelson, 1993).

8 Helen Nissenbaum

collective action of this type, the plurality of causal antecedents and decision makers
helps to define a typical set of excuses for those low down in the hierarchy who are “only
following orders,” as well as for those of higher rank who are more distantly related to the
outcomes. However, we should not mistakenly conclude from the observation that
accountability is obscured due to collective action that no one is, or ought to have been,
accountable. The worry that this paper addresses is that if computer technology is
increasingly produced by “many hands,” and if, as seems to be endemic to many hands
situations, we lose touch with who is accountable (such as occurred with the Therac-25),
then we are apt to discover a disconcerting array of computers in use for which no one is
answerable.

Bugs

The source of a second barrier to accountability in computing is omnipresent bugs and the
way many in the field routinely have come to view them. To say that bugs in software
make software unreliable and cause systems to fail is to state the obvious. However, not
quite as obvious is how the way we think about bugs affects considerations of
accountability. (I use the term “bug” to cover a variety of types of software errors
including modeling, design and coding errors.) The inevitability of bugs escapes very few
computer users and programmers and their pervasiveness is stressed by most software,
and especially safety, engineers. The dictum, “There is always another software bug,”
(Leveson & Turner, 1993) especially in the long and complex systems controlling life-
critical and quality-of-life-critical technologies, captures the way in which many
individuals in the business of designing, building and analyzing computer systems
perceive this fact of programming life. Errors in complex functional computer systems
are an inevitable presence in ambitious systems (Corbató, 1991). David Parnas has made
a convincing case that “errors are more common, more pervasive, and more troublesome,
in software than in other technologies,” and that even skilled program reviewers are apt to

miss flaws in programs (Parnas et al., 1990).13 Even when we factor out sheer
incompetence, bugs in significant number are endemic to programming. They are the
natural hazards of any substantial system.

Although this way of thinking about bugs is helpful because it underscores the
vulnerability of complex systems, it also creates a problematic mind-set for
accountability. On the one hand, the standard conception of responsibility directs us to the
person who either intentionally or by not taking reasonable care causes harm. On the
other, the view of bugs as inevitable hazards of programming implies that while harms
and inconveniences caused by bugs are regrettable, they cannot – except in cases of
obvious sloppiness – be helped. In turn, this suggests that it is unreasonable to hold
programmers, systems engineers, and designers, to blame for imperfections in their
systems.

Parallels from other areas of technology can perhaps clarify the contrast that I am trying
to draw between cases of failures for which one holds someone accountable, and
frequently blameworthy, and cases where – despite the failures – one tends to hold no one
accountable. As an example of the former, consider the case of the space-shuttle
Challenger. Following an inquiry into the Challenger’s explosion, critics found fault with
NASA and Morton-Thiokol because several engineers, aware of the limitations of the O-

13Thanks to Deborah Johnson for suggesting this phrase.

Accountability in a Computerized Society 9

Rings, had conveyed to management the strong possibility of failure under cold-weather-
launch conditions. We hold NASA executives accountable, and judge their actions
reckless, because despite this knowledge and the presence of cold-weather conditions,
they went ahead with the space-shuttle launch.

In contrast, consider an experience that was common during construction of several of
the great suspension bridges of the late 19th century, such as the St. Louis and Brooklyn
Bridges. During construction, hundreds of bridge workers succumbed to a mysterious

disease then referred to as “the bends,” or “caisson disease.”14 Although the working
conditions and inadequate response from medical staff were responsible for the disease,
we cannot assign blame for the harms suffered by the workers or find any individual or
distinct group, such as the bridge companies, their chief engineers, or even their medical
staff, accountable because causes and treatments of the disease were beyond the scope of
medical science of the day.

For the great suspension bridges, it was necessary to sink caissons deep underground in
order to set firm foundations – preferably in bedrock – for their enormous towers. Upon
emerging from the caissons, workers would erratically develop an array of symptoms
which might include dizziness, double vision, severe pain in torso and limbs, profuse
perspiration, internal bleeding, convulsions, repeated vomiting and swollen and painful
joints. For some, the symptoms would pass after a matter of hours or days, while for
others symptoms persisted and they were left permanently paraplegic. Others died. While
bridge doctors understood that these symptoms were related to workers’ exposure to
highly pressured air, they could not accurately pinpoint what caused “the bends.” They
offered a variety of explanations, including newness to the job, poor nutrition, and
overindulgence in alcohol. They tried assigning caisson work only to those they judged to
be in “prime” physical shape, reducing the time spent in the caissons, and even outfitting
workers with bands of zinc and silver about their wrists, arms, and ankles. All to no avail.

We have since learned that “decompression sickness” is a condition brought on by
moving too rapidly from an atmosphere of compressed air to normal atmospheric
conditions. It is easily prevented by greatly slowing the rate of decompression. Ironically,
a steam elevator that had been installed in both the Brooklyn Bridge and St. Louis Bridge
caissons, as a means of alleviating discomfort for bridge workers so they would not have
to make the long and arduous climb up a spiral staircase, made things all the more
dangerous. Nowadays, for a project the scope of the Brooklyn Bridge, a decompression
chamber would be provided as a means of controlling the rate of decompression. Bridge
companies not following the recommended procedures would certainly be held
blameworthy for harms and risks.

What is the relation of these two examples to the way we conceive of bugs? When we
conceive of bugs as an inevitable byproduct of programming we are likely to judge bug-
related failures in the way we judged early handling of the bends: inevitable, albeit
unfortunate, consequence of a glorious new technology for which we hold no one
accountable. The problem with this conception of bugs, is that it is a barrier to identifying
cases of bug-related failure that more closely parallel the case of the Challenger. In these
types of cases we see wrongdoing and expect someone to “step forward” and be
answerable. The bends case shows, too, that our standard of judgment need not remain
fixed. As knowledge and understanding grows, so the standard changes. Today, bridge
building companies are accountable for preventing cases of decompression sickness. An

14Feinberg’s analysis is more complex, involving several additional conditions and refinements. Since these are not directly relevant

to our discussion, for the sake of simplicity I have omitted them here.

10 Helen Nissenbaum

explicitly more discerning approach to bugs that indicates a range of acceptable error
would better enable discrimination of the “natural hazards,” the ones that are present
despite great efforts and adherence to the highest standards of contemporary practice,
from those that with effort and good practice, could have been avoided.

Finally, if experts in the field deny that such a distinction can be drawn, in view of the
inevitability of bugs and their potential hazard, it is reasonable to think that the field of
computing is not yet ready for the various uses to which it is being put.

The Computer as Scapegoat

Most of us can recall a time when someone (perhaps ourselves) offered the excuse that it
was the computer’s fault – the bank clerk explaining an error, the ticket agent excusing
lost bookings, the student justifying a late paper. Although the practice of blaming a
computer, on the face of it, appears reasonable and even felicitous, it is a barrier to
accountability because, having found one explanation for an error or injury, the further
role and responsibility of human agents tend to be underestimated – even sometimes
ignored. As a result, no one is called upon to answer for an error or injury.

Consider why blaming a computer appears plausible by applying Feinberg’s analysis of
blame. First, the causal condition: Computer systems frequently mediate the interactions
between machines and humans, and between one human and another. This means that
human actions are distanced from their causal impacts (which in some cases could be
harms and injuries) and, at the same time, that the computer’s action is a more direct
causal antecedent. In such cases the computer satisfies the first condition for
blameworthiness. Of course, causal proximity is not a sufficient condition. We do not, for
example, excuse a murderer on grounds that it was the bullet entering a victim’s head,
and not he, who was directly responsible for the victim’s death. The fault condition must
be satisfied too.

Here, computers present a curious challenge and temptation. As distinct from many
other inanimate objects, computers perform tasks previously performed by humans in
positions of responsibility. They calculate, decide, control, and remember. For this
reason, and perhaps even more deeply rooted psychological reasons (Turkle, 1984),
people attribute to computers and not to other inanimate objects (like bullets) the array of
mental properties, such as intentions, desires, thoughts, preferences, that lead us to judge

human action faulty and make humans responsible for their actions.15 Were a loan
adviser to approve a loan to an applicant who subsequently defaulted on the loan, or a
doctor to prescribe the wrong antibiotic for a patient who died, or an intensive care
attendant incorrectly to assess the prognosis for an accident victim and deny the patient a
respirator, we would hold accountable the loan adviser, the doctor, and the attendant.
When these human agents are replaced with computerized counterparts (the computerized
loan adviser, and expert systems MYCIN, that suggests the appropriate antibiotics for a
given conditions, and APACHE, a system that predicts a patient’s chance of survival
[Fitzgerald, 1992]), it may seem reasonable to hold the systems answerable for harms.
That is, there is a prima facie case in favor of associating blame with the functions even
though they are now performed by computer systems and not humans.

Not all cases in which people blame computers rest on this tendency to attribute to
computers the special characteristics that mark humans as responsible agents. In at least

15Readers interested in this case may refer to Denning, P. (1990) Computers Under Attack. New York: ACM Press.

Accountability in a Computerized Society 11

some cases, by blaming a computer, a person is simply shirking responsibility. In others,
typically cases of collective action, a person cites a computer because she is genuinely
baffled about who is responsible. When an airline reservation system malfunctions, for
example, lines of accountability are so obscure that to the ticket agent the computer
indeed is the most salient causal antecedent of the problem. Here, the computer serves as
a stopgap for something elusive, the one who is, or should be, accountable. Finally, there
are the perplexing cases, discussed earlier, where computers perform functions previously
performed by humans in positions of responsibility leading to the illusion of computers as
moral agents capable of assuming responsibility. (For interesting discussions of the
viability of holding computers morally responsible for harms see Ladd, 1989 and
Snapper, 1985.) In the case of an expert system, working out new lines of accountability
may point to designers of the system, the human experts who served as sources, or the

organization that chooses to put the system to use.16 Unless alternate lines of
accountability are worked out, accountability for these important functions will be lost.

Ownership without Liability

The issue of property rights over computer software has sparked active and vociferous
public debate. Should program code, algorithms, user-interface (“look-and-feel”), or any
other aspects of software be privately ownable? If yes, what is the appropriate form and
degree of ownership – trade secrets, patents, copyright, or a new (sui generis) form of
ownership devised specifically for software? Should software be held in private
ownership at all? Some have clamored for software patents, arguing that protecting a
strong right of ownership in software, permitting owners and authors to “reap rewards,” is
the most just course. Others urge social policies that would place software in the public
domain, while still others have sought explicitly to balance owners’ rights with broader
and longer-term social interests and the advancement of computer science (Nissenbaum,
1995; Stallman, 1987). Significantly, and disappointingly, absent in these debates is any

reference to owners’ responsibilities.17

While ownership implies a bundle of rights, it also implies responsibilities. In other
domains, it is recognized that along with the privileges and profits of ownership comes
responsibility. If a tree branch on private property falls and injures a person under it, if a
pet Doberman escapes and bites a passerby, the owners are accountable. Holding owners
responsible makes sense from a perspective of social welfare because owners are typically
in the best position to control their property directly. Likewise in the case of software, its
owners (usually the producers) are in the best position to affect the quality of the software
they release to the public. Yet the trend in the software industry is to demand maximal
property protection while denying, to the extent possible, accountability. This trend
creates a vacuum in accountability as compared with other contexts in which a
comparable vacuum would be filled by property owners.

This denial of accountability can be seen, for example, in the written license
agreements that accompany almost all mass-produced consumer software which usually
includes one section detailing the producers’ rights, and another negating accountability.
According to most versions of the license agreement, the consumer merely licenses a

16The overlap, though significant, is only partial. Take for example, circumstances in which a per-
179This phrase was first coined by Dennis Thompson in his book-chapter “The Moral Responsibility of Many Hands” (Thompson,

1987) which discusses the moral responsibilities of political office holders and public officials working within large government

bureaucracies.

12 Helen Nissenbaum

copy of the software application and is subject to various limitations on use and access,
while the producer retains ownership over the program itself as well as the copies on
floppy-disk. The disclaimers of liability are equally explicit. Consider, for example,
phrases taken from the Macintosh Reference Manual (1990): “Apple makes no warranty
or representation, either expressed or implied with respect to software, its quality,
performance, merchantability, or fitness for a particular purpose. As a result, this software
is sold ‘as is,’ and you, the purchaser are assuming the entire risk as to its quality and
performance.” The Apple disclaimer goes on to say, “In no event will Apple be liable for
direct, indirect, special, incidental, or consequential damages resulting from any defect in
the software or its documentation, even if advised of the possibility of such damages.”
The Apple disclaimer is by no means unique to Apple, but in some form or another
accompanies virtually all consumer software.

The result is that software is released in society, for which users bear the risks, while
those who are in the best position to take responsibility for potential harms and risks
appear unwilling to do so. Although several decades ago software developers might
reasonably have argued that their industry was not sufficiently well developed to be able
to absorb the potentially high cost of the risks of malfunction, the evidence of present
conditions suggests that a re-evaluation is well warranted. The industry has matured, is
well entrenched, reaches virtually all sectors of the economy, and quite clearly offers the
possibility of stable and sizable profit. It is therefore appropriate that the industry be
urged to acknowledge accountability for the burden of its impacts.

Restoring Accountability

The systematic erosion of accountability is neither a necessary nor inevitable consequence
of computerization; rather it is a consequence of co-existing factors discussed above:
many hands, bugs, computers-as-scapegoat, and ownership without liability, which act

together to obscure accountability.18 Barriers to accountability are not unique to
computing. Many hands create barriers to responsible action in a wide range of settings,
including technologies other than computing; failures can beset other technologies even if
not to the degree, and in quite the same way, as bugs in computer systems. The question
of who should bear the risks of production – owners or users – is not unique to
computing. Among the four, citing the computer as scapegoat may be one that is more
characteristic of computing than of other technologies. The coincidence of the four
barriers, perhaps unique to computing, makes accountability in a computerized society a
problem of significant proportion. I conclude with the suggestion of three possible
strategies for restoring accountability.

An Explicit Standard of Care

A growing literature discusses guidelines for safer and more reliable computer systems
(for example, Leveson, 1986 and Parnas et al., 1990). Among these guidelines is a call for
simpler design, a modular approach to system building, meaningful quality assurance,
independent auditing, built-in redundancy, and excellent documentation. Some authors
argue that better and safer systems would result if these guidelines were expressed as an
explicit standard of care taken seriously by the computing profession, promulgated
through educational institutions, urged by professional organizations, and even enforced

18Most users of personal computers will have experienced occasions when their computers freeze. Neither the manufacturer of the

operating system nor of the applications assume responsibility for this, preferring to blame the problem on “incompatibilities.”

Accountability in a Computerized Society 13

through licensing or accreditation.19 Naturally, this would not be a fixed standard but one
that evolved along with the field. What interests me here, however, is another potential
payoff of an explicit standard of care; namely, a nonarbitrary means of determining
accountability. A standard of care offers a way to distinguish between malfunctions
(bugs) that are the result of inadequate practices, and the failures that occur in spite of a
programmer’s or designer’s best efforts, for distinguishing analogs of the failure to
alleviate the bends in 19th-century bridge workers, from analogs of the Challenger space-
shuttle. Had the guidelines discussed by Leveson and Turner (1993), for example, been
accepted as a standard of care at the time the Therac-25 was created, we would have had
the means to establish that corporate developers of the system were accountable for the
injuries. As measured against these guidelines they were negligent and blameworthy.

By providing an explicit measure of excellence that functions independently of
pressures imposed by an organizational hierarchy within which some computer systems
engineers in corporations and other large organizations are employed, a standard of care
could also function to back up professional judgment. It serves to bolster an engineer’s
concern for safety where this concern conflicts with, for example, institutional frugality.
A standard of care may also be a useful vehicle for assessing the integrity of the field of
computing more broadly. In a point raised earlier, I suggested that it is important to have
a good sense of whether or when the “best efforts” as recognized by a field – especially
one as widely applied as computing – are good enough for the many uses to which they
are put.

Distinguishing Accountability from Liability

For many situations in which issues of responsibility arise, accountability and liability are
strongly linked. In spite of their frequent connection, however, their conceptual
underpinnings are sufficiently distinct so as to make a difference in a number of
important contexts. One key difference is that appraisals of liability are grounded in the
plight of a victim, whereas appraisals of accountability are grounded in the relationship of

an agent to an outcome.20 The starting point for assessing liability is the victim’s
condition; liability is assessed backward from there. The extent of liability, frequently
calculated in terms of sums of money, is determined by the degree of injury and damage
sustained by any victims. The starting point for assessing accountability is the nature of
an action and the relationship of the agent (or several agents) to the action’s outcome. (In
many instances, accountability is mediated through conditions of blameworthiness, where
the so-called “causal” and “fault” conditions would be fulfilled.) Although those people
who are accountable for a harm are very frequently the same as those who are liable,
merging the notions of liability with accountability, or accepting the former as a substitute
for the latter, can obscure accountability in many of the contexts targeted in earlier
sections of this paper. Consider, for example, the problem of many hands and how it is
affected by this.

The problem of many hands is profound and seems unlikely to yield easily to a general,
or slick, solution. For the present, a careful case-by-case analysis of a given situation in
order to identify relevant causal factors and fault holds the most promise. Such analysis is
rarely easy or obvious for the much studied, widely publicized catastrophes such as the

19The primary sources for my discussion are Leveson and Turner’s excellent and detailed account (1993) and an earlier paper by

Jacky (1989).
20Much credit is due to Fritz Hager, the hospital physicist in Tyler, Texas, who took upon himself the task of uncovering the problem

and helped uncover software flaws.

14 Helen Nissenbaum

Therac-25, or the Challenger, and perhaps even more so for the preponderant smaller
scale situations in which accountability is nevertheless crucial. Our grasp of
accountability can be obscured, however, if we fail to distinguish between accountability
and liability. Consider why. In cases of collective (as opposed to individual) action, if all
we care about is liability, it makes sense to share the burden of compensation among the
collective in order to lighten the burden of each individual. Moreover, because
compensation is victim-centered, targeting one satisfactory source of compensation (the
so-called “deep pocket”), can and often does let others “off the hook.” In contrast, where
we care about accountability, many hands do not offer a means of lessening or escaping
its burden. No matter how many agents there are, each may be held equally and fully

answerable for a given harm.21 There is no straightforward analog with the deep-pocket
phenomenon.

 Although a good system of liability offers a partial solution because at least the needs
of victims are addressed, it can deflect attention away from accountability. Decision
makers may focus exclusively on liability and fail to grasp the extent of their
answerability for actions and projects they plan. The Ford Pinto case provides an
example. Although the case as a whole is too complex to be summarized in a few
sentences one aspect bears directly on this issue. According to a number of reports, when
Ford executives considered various options for the design of the Pinto, they focused on
liability and predicted that losses due to injury-liability lawsuits for the cheaper design

would be offset by the expected savings.22 Ford corporation could spread the anticipated

21See also Smith (1985) for an explanation of why software is particularly prone to errors.
22Of course there are many situations in which harm and injury occur but are no one’s fault; that is, no one is to blame for

Accountability in a Computerized Society 15

losses so as not to be significantly affected by them. By spreading the liability thin
enough and covering it by the savings from the cheaper design, no individual or part of
the company would face a cost too heavy to bear.

If Ford executives had been thinking as carefully about answerability (which cannot be
spread, thinned and offset) as they were about liability, their decision might well have
been different. I do not hereby impugn the general method of cost-benefit analysis for
business decisions of this sort. Rather, I suggest that in reckoning only with liability, the
spectrum of values the executives considered was too narrow and pushed them in the
wrong direction. A professional culture where accountability prevails, where the
possibility exists for each to be called to answer for his or her decisions, would not as
readily yield to decisions like the one made by Ford executives. Many hands need not
make, metaphorically speaking, the burden lighter.

Strict Liability and Producer Responsibility

In the previous section I suggested that liability should not be understood as a substitute
for accountability. Acknowledging, or for that matter denying, one’s liability for an
outcome does not take care of one’s answerability for it. Nevertheless, establishing
adequate policies governing liability for impacts of computerization is a powerful means
of expressing societal expectations and at least partially explicates lines of accountability.
Well-articulated policies on liability would serve the practical purpose of protecting
public interests against some of the risks of computer system failure which are further
amplified by a reluctance on the part of producers and owners of systems-in-use to be
accountable for them. I propose that serious consideration be given to a policy of strict
liability for computer system failure, in particular for those sold as consumer products in
mass markets.

To be strictly liable for a harm is to be liable to compensate for it even though one did
not bring it about through faulty action. (In other words, one “pays for” the harm if the
causal condition is satisfied even though the fault condition is not.) This form of liability,
which is found in the legal codes of most countries, is applied, typically, to the producers
of mass-produced consumer goods, potentially harmful goods, and to the owners of
“ultra-hazardous” property. For example, milk producers are strictly liable for illness
caused by spoiled milk, even if they have taken a normal degree of care; owners of
dangerous animals (for example, tigers in a circus) are strictly liable for injuries caused by
escaped animals even if they have taken reasonable precautions to restrain them.

Supporters of strict liability argue that it is justified, in general, because it benefits
society by placing the burden of risk where it best belongs. Its service to the public
interest is threefold. First, it protects society from the risks of potentially harmful or
hazardous goods and property by providing an incentive to sellers of consumer products
and owners of potentially hazardous property to take extraordinary care. Second, it seeks
compensation for victims from those best able to afford it, and to guard against the harm.
And third, it reduces the cost of litigation by eliminating the onerous task of proving fault.
Critics, on the other hand, argue that not only is strict liability unjust, because people are
made to pay for harms that were not their fault, but it might indeed work against the
public interest by discouraging innovative products. Because of the prohibitive cost of
bearing the full risk of malfunction and injury, many an innovation might not be pursued
for fear of ruin. In the case of new and promising, but not yet well-established
technologies, this argument may hold even more sway.

Whether or not strict liability is a good general strategy is an issue best reserved for
another forum. However, themes from the general debate can cast light on its merits or

16 Helen Nissenbaum

weaknesses as a response to computer system failure, especially since our present system
of liability does include strict liability as a viable answer. In early days of computer
development, recognition of both the fragility and the promise of the field might have
argued for an extra degree of protection for producers by allowing risk to be shifted to
consumers and other users of computing. In other words, those involved in the innovative
and promising developments were spared the burden of liability. Over the course of
several decades we have witnessed a maturing of the field, which now shows clear
evidence of strength and vitality. The argument for special protection is therefore less
compelling. Furthermore, computing covers a vast array of applications, many resembling
mass-produced consumer goods, and a number that are life-critical. This argues for
viewing producers of computer software in a similar light to other producers of mass-
produced consumer goods and potentially harm-inducing products.

By shifting the burden-of-accountability to the producers of defective software, strict
liability would also address a peculiar anomaly. One of the virtues of strict liability is that
it offers a means of protecting the public against the potential harms of risky artifacts and
property. Yet in the case of computing and its applications, we appear to live with a
strange paradox. On the one hand, the prevailing lore portrays computer software as
prone to error in a degree surpassing most other technologies, and portrays bugs as an
inevitable by-product of computing itself. Yet on the other hand, most producers of
software explicitly deny accountability for the harmful impacts of their products, even
when they malfunction. Quite the contrary should be the case. Because of the always-
lurking possibility of bugs, software seems to be precisely the type of artifact for which
strict liability is appropriate; it would assure compensation for victims, and send an
emphatic message to producers of software to take extraordinary care to produce safe and
reliable systems.

REFERENCES

Borning, A. 1987. Computer System Reliability and Nuclear War. Communications of
the ACM 30(2):112–131.

Corbató, F.J. 1991. On Building Systems That Will Fail. Communications of the ACM
34(9):73–81.

De George, R. 1991. Ethical Responsibilities of Engineers in Large Organizations: The
Pinto Case. InCollective Responsibility, eds. L. May and S. Hoffman, 151–166.
Lanham, MD: Rowman and Littlefield.

Feinberg, J. 1970. Collective Responsibility. In Doing and Deserving, ed. J. Feinberg.
Princeton, NJ: Princeton University Press.

Feinberg, J. 1985. Sua Culpa. In Ethical Issues in the Use of Computers, eds. D.G.
Johnson and J. Snapper. Belmont, CA: Wadsworth.

Fitzgerald, S. 1992. Hospital Computer Predicts Patients’ Chance of Survival. The Miami
Herald. July 19, 1992.

Fried, J.P. 1993. Maximum Terms for Two Youths in Red Hook Murder. New York
Times, July 7, 1993.

Accountability in a Computerized Society 17

Friedman, B., and P.H. Kahn, Jr. 1997. Human Agency and Responsible Computing:
Implications for Computer System Design. In Human Values and the Design of
Computer Technology, ed. Batya Friedman. Stanford, CA: CSLI Publications.

Friedman, B., and L.I. Millett. 1997. Reasoning about Computers as Moral Agents: A
Research Note. In Human Values and the Design of Computer Technology, ed. Batya
Friedman. Stanford, CA: CSLI Publications.

Jacky, J. 1989. Safety-Critical Computing: Hazards, Practices, Standards and
Regulations. University of Washington. Unpublished Manuscript.

Johnson, D.G., and J.M. Mulvey. 1993. Computer Decisions: Ethical Issues of
Responsibility and Bias. Statistics and Operations Research Series, Princeton
University, SOR-93-11.

Ladd J. 1989. Computers and Moral Responsibility: A Framework for an Ethical
Analysis. In The Information Web: Ethical and Social Implications of Computer
Networking, ed. C. Gould. Boulder, CO: Westview Press.

Leveson, N. 1986. Software Safety: Why, What, and How. Computing Surveys 18(2):
125–163.

Leveson, N., and C. Turner. 1993. An Investigation of the Therac-25 Accidents.
Computer 26(7): 18–41.

Littlewood, B., and L. Strigini. 1992. The Risks of Software. Scientific American,
November: 62–75.

McCullough, D. 1972. The Great Bridge. New York: Simon & Schuster.

Neumann, P. G. (monthly column) Inside Risks. Communications of the ACM.

Nissenbaum, H. 1995. Should I Copy My Neighbor’s Software? In Computers, Ethics,
and Social Values, ed. D.G. Johnson and H. Nissenbaum. Englewood: Prentice-Hall.

Parnas, D., J. Schouwen, and S.P. Kwan. 1990. Evaluation of Safety-Critical Software.
Communications of the ACM 33(6): 636–648.

Samuelson, P. 1992. Adapting Intellectual Property Law to New Technologies: A Case
Study on Computer Programs. National Research Council Report.

Samuelson, P. 1993. Liability for Defective Information. Communications of the ACM
36(1): 21–26.

Smith, B.C. 1985. The Limits of Correctness. CSLI-85-35. Stanford, CA: CSLI
Publications .

Snapper, J.W. 1985. Responsibility for Computer-Based Errors. Metaphilosophy 16:
289–295.

Stallman, R.M. 1987. The GNU Manifesto. GNU Emacs Manual: 175–84. Cambridge,
MA: Free Software Foundation.

Thompson, D. 1987. Political Ethics and Public Office. Cambridge, MA: Harvard
University Press.

Thompson, D. 1987. The Moral Responsibility of Many Hands. In Political Ethics and
Public Office, ed. D. Thompson, 46–60. Cambridge, MA: Harvard University Press.

18 Helen Nissenbaum

Turkle, S. 1984. The Second Self. New York: Simon & Schuster.

Velasquez, M. 1991. Why Corporations Are Not Morally Responsible for Anything They
Do. In Collective Responsibility, eds. L. May and S. Hoffman, 111–131. Rowman and
Littlefield.

Weizenbaum, J. 1972. On the Impact of the Computer on Society. Science 176(12): 609–
614.

