
Cryptography, Trust and Privacy: It’s Complicated
Ero Balsa
Cornell Tech

USA
ero.balsa@cornell.edu

Helen Nissenbaum
Cornell Tech

USA
helen.nissenbaum@cornell.edu

Sunoo Park
Cornell Tech

USA
sep243@cornell.edu

ABSTRACT
Privacy technologies support the provision of online services while
protecting user privacy. Cryptography lies at the heart of many
such technologies, creating remarkable possibilities in terms of
functionality while offering robust guarantees of data confidential-
ity. The cryptography literature and discourse often represent that
these technologies eliminate the need to trust service providers, i.e.,
they enable users to protect their privacy even against untrusted
service providers. Despite their apparent promise, privacy technolo-
gies have seen limited adoption in practice, and the most successful
ones have been implemented by the very service providers these
technologies purportedly protect users from.

The adoption of privacy technologies by supposedly adversarial
service providers highlights a mismatch between traditional models
of trust in cryptography and the trust relationships that underlie
deployed technologies in practice. Yet this mismatch, while well
known to the cryptography and privacy communities, remains rela-
tively poorly documented and examined in the academic literature—
let alone broader media. This paper aims to fill that gap.

Firstly, we review how the deployment of cryptographic tech-
nologies relies on a chain of trust relationships embedded in the
modern computing ecosystem, from the development of software
to the provision of online services, that is not fully captured by tra-
ditional models of trust in cryptography. Secondly, we turn to two
case studies—web search and encrypted messaging—to illustrate
how, rather than removing trust in service providers, cryptographic
privacy technologies shift trust to a broader community of secu-
rity and privacy experts and others, which in turn enables service
providers to implicitly build and reinforce their trust relationship
with users. Finally, concluding that the trust models inherent in the
traditional cryptographic paradigm elide certain key trust relation-
ships underlying deployed cryptographic systems, we highlight the
need for organizational, policy, and legal safeguards to address that
mismatch, and suggest some directions for future work.

CCS CONCEPTS
• Software and its engineering; • Security andprivacy→Cryp-
tography; Systems security; • Social and professional topics→
Computing / technology policy;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CSLAW ’22, November 1–2, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9234-1/22/11. . . $15.00
https://doi.org/10.1145/3511265.3550443

KEYWORDS
privacy, cryptography, trust, assumptions
ACM Reference Format:
Ero Balsa, Helen Nissenbaum, and Sunoo Park. 2022. Cryptography, Trust
and Privacy: It’s Complicated. In Proceedings of the 2022 Symposium on
Computer Science and Law (CSLAW ’22), November 1–2, 2022, Washington,
DC, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3511265.3550443

1 INTRODUCTION
Modern cryptography enables remarkably versatile uses of informa-
tionwhile simultaneouslymaintaining (partial) secrecy of that infor-
mation. In addition to good old encryption, modern techniques such
as secure multiparty computation and homomorphic encryption
have opened a new realm of possibilities in privacy technologies,
enabling the design and development of previously impossible—and
sometimes seemingly paradoxical—combinations of functionality
and confidentiality. Examples include, among others, anonymous
credentials, which can enable verification without requiring identi-
fication [14, 17]; homomorphic encryption, which can enable cloud
services that conceal user content from cloud providers [58]; and
private information retrieval, which keeps user consumption of
digital information (e.g., web search, media streaming) confidential
from the provider [29, 40].

Being at the heart of modern privacy technologies, cryptogra-
phy has pushed the limits of what is possible in terms of data
minimization, a core principle in privacy engineering and privacy
by design [31]. Cryptography is instrumental to the realization of
data minimization strategies such as minimum data collection and
minimum data exposure, which in turn result in minimization of
the need for trust [32]. In theory, by shielding data flows from unau-
thorized access and prying eyes by design, implemented through
code, rather than contractual agreements or privacy policies, cryp-
tography enables privacy-preserving systems that do not rely on
the goodwill or good behavior of the service provider or system
administrators, thus minimizing the need to trust them with the
protection of users’ privacy.

Yet in spite of the powerful privacy properties that cryptographic
privacy technologies promise, few of these technologies have seen
adoption in practice. Whereas cryptography for security has been
largely successful, holding the key (no pun intended) to secure trans-
actions online, cryptography for privacy has not shared the same
fate [41]. Cryptography for security may address important privacy
concerns (e.g., HTTPS); however, few organizations have adopted
the kind of privacy technologies that protect their customers or
users against the organization itself, in theory ridding users of the
need to rely on service providers to protect their privacy [23, 30]. In
the same vein, despite the fact that outcries about privacy invasions
and state and corporate surveillance have become a mainstay in

https://doi.org/10.1145/3511265.3550443
https://doi.org/10.1145/3511265.3550443
https://doi.org/10.1145/3511265.3550443

CSLAW ’22, November 1–2, 2022, Washington, DC, USA Ero Balsa, Helen Nissenbaum, and Sunoo Park

contemporary media, few users have taken matters into their own
hands and adopted these technologies to protect their privacy.1

Reasons for this lack of adoption have long puzzled and drawn
the interest of the academic community. Assumptions and hypothe-
ses about poor usability, user and organizational unawareness,
economic incentives and inefficiency are regarded as a complex
network of interacting factors that prevent the adoption of these
technologies, either by end users or service providers [42, 67, 70].
Among these factors, there is a key mismatch between how trust
in cryptosystems is modeled to operate in theory and how it oper-
ates in practice [42]. In cryptographic privacy technologies design,
service providers are often considered to be the main adversary.
In practice, however, the deployment of cryptographic privacy
technologies often depends on the very service providers these
technologies are meant to protect against. Even more, privacy by
design dictates that service providers embed privacy technologies
in their system designs.

Take popular instant messaging service WhatsApp, for exam-
ple. WhatsApp implements end-to-end encryption to protect users’
message confidentiality, protecting WhatsApp users against pri-
vacy intrusions by WhatsApp itself. The traditional cryptographic
model of end-to-end encryption, in contrast, considers that users
themselves install an encryption tool to protect their messages
against the adversarial service provider (here, WhatsApp), in addi-
tion to assuming that the client application that performs encryp-
tion is trustworthy and independent from the adversarial service
provider. This model does not match reality today: WhatsApp, the
service provider, deploys the encryption code and controls the
client, i.e., the WhatsApp application itself.

In light of this significant mismatch, we seek to examine whether
and how cryptographic privacy technologies, when adopted by
service providers, effectively eliminate trust in service providers.
We seek to understand the implications of having the same party
against whom cryptographic privacy technologies are meant to
defend users being the one implementing these technologies, and
whether or not this apparent contradiction undermines the privacy
protection these technologies are meant to provide.

Such model limitations and mismatches are generally well un-
derstood by cryptographers, and thus may seem to lack novelty
to most in the cryptography community. Our message is not to
simply reiterate the existence of these limitations or to criticize
the traditional cryptographic approach. Rather, we argue that the
lack of systematic exposition thereon, and the effective reliance on
those modeling assumptions by deployed technologies, have impor-
tant and understudied consequences in practice. Critical attention
to modeling limitations when maintaining claims about deployed
cryptosystems’ properties is essential: without it, we risk conveying
an oversimplistic and false sense of security (quite possibly at odds
with lay users’ well-founded skepticism [54]). Academic claims
taken out of their expert context may further embolden service
providers to simplistically reiterate those claims.2

1Notably, some cryptographic privacy technologies cannot be unilaterally adopted
by users, as they require service providers to deploy them (e.g., privacy technologies
based on private information retrieval).
2To mention just one example, WhatsApp claims that “WhatsApp’s end-to-end encryp-
tion [...] ensures only you and the person you’re communicating with can read or listen to
what is sent, and nobody in between, not even WhatsApp. [...] WhatsApp has no ability to
see the content of messages or listen to calls that are end-to-end encrypted” [68]. As we

Such claims can be found across many cryptographic appli-
cations today. End-to-end encryption, already mentioned above,
promises that only the sender and receiver can read a message,
typically without mention of the fact that the messaging provider
is likely the one implementing the encryption. The selling point
of homomorphic encryption (HE) is to shield users from the pry-
ing eyes of the cloud provider, typically without mention of the
fact that the cloud provider would likely be the one implement-
ing HE and running the whole infrastructure [64]. Similar claims
of trustlessness abound and sustain the hype of “crypto” in the
blockchain context, even when “a few economic players—such as the
largest mining pools and mining farms, as well as the most popular
online exchanges and blockchain explorers—have become centralized
points of failure and control in the governance of many blockchain
networks [21]. This, in turn, undermines the deployment of and
investment in sociotechnical measures that need to be in place to
address this mismatch.

1.1 Relation to prior work
The academic literature is awash with papers that examine reasons
which may explain the poor adoption of cryptographic privacy
technologies. In a 2013 paper, Narayanan charts the main lines of
inquiry, which he broadly identifies as human factors, developer’s
lack of training and mismatched incentives and models [42]. Within
human factors, a vast body of work has studied usability issues that
may hinder user adoption, from the seminal and now classic 1999
Why Johnny can’t encrypt study that exposed the inability of lay
people to encrypt e-mail with PGP [70], to the more recent studies
that investigate users’ perceptions and understanding of end-to-end
encryption on instant messaging apps [2, 3, 22, 54, 66, 71]. These
later studies are illuminating because they call into question previ-
ous premises around usability, i.e., people still do not understand
how encryption works, the threats encryption is meant to protect
them from, or the extent to which it mitigates those threats, yet
they are using encryption, if only because it is embedded by default
in the services they use [2, 3, 22, 66, 71]. This work also casts a new
light on Narayanan’s point about mismatched models; namely, that
“crypto protocols treat service providers as adversaries, a model that’s
nonsensical in the modern computing environment”. And yet some
studies evaluate usability by how well users understand this model,
e.g., Schroder et al. argue that because users do not compare keys
with their conversation partners for verification purposes, they are
“very likely to fall for attacks [such as] central services [exchanging]
cryptographic keys” [54]. Such analysis makes sense within the
traditional cryptographic model; in practice, when those central
services control the app, they can undermine the key verification
implementation in ways effectively invisible even to users who
do try to verify. In other words, the traditional model would have
users trust the implementation of the key verification process that
displays the encryption/decryption keys, yet mistrust the service
provider because it may tamper with their keys. While this seems to
be a contradiction, it logically follows from the traditional model of
cryptosystem design: user device security is out of scope, client-side

examine below, WhatsApp does retain that ability, as it controls the code of the app
and can deactivate end-to-end encryption or push a side-channel through an update
in a snap of a finger.

Cryptography, Trust and Privacy: It’s Complicated CSLAW ’22, November 1–2, 2022, Washington, DC, USA

encrypting software is assumed to be trustworthy, and adversaries
trying to intercept and decrypt messages in transit (i.e. eavesdrop-
pers) are a threat. In practice, however, both tampering with keys
and the key verification process are equally legitimate threats, as
the party providing the encryption software is the adversarial party.

There has been extensive work on the study of software vulnera-
bilities that undermine the theoretical properties of cryptosystems,
including the introduction of intentional or unintentional back-
doors, zero-days, or the possibility of side-channel attacks [7, 53].
Similarly, scholars have drawn attention to how recent shifts in
computing infrastructure and software engineering practices may
alter the way we think about security and privacy [6, 27]. Other
work has pointed out at the mismatch between the role of and trust
assumptions about service providers in privacy law and privacy en-
gineering [23]. However, there has been significantly less attention
to the consequences of having service providers —whom traditional
cryptographic threat models treat as adversaries— control or assist
in the adoption of cryptographic privacy technologies [9]; or more
generally how traditional cryptographic assumptions and models
do not accurately reflect the current paradigm of provision of digital
services [27, 33]. We aim to bridge this gap.

1.2 Summary of contributions
Our contributions are as follows.

(1) In Sect. 2, we describe how cryptographic privacy guaran-
tees depend on broader sociotechnical arrangements that
traditional trust models in cryptography abstract away from.
Privacy guarantees ultimately depend not only on crypto-
graphic specifications and cryptographic security analyses,
but on a complex chain of trust relationships inherent in the
modern computing ecosystem, from the development of soft-
ware to the provision of online services, including control
over user devices and the software that runs on them.

(2) In Sect. 3, we show how instead of eliminating the need
to trust providers, cryptographic privacy technologies shift
trust to a broader community of security and privacy experts,
in turn enabling service providers to implicitly build and rein-
force trust relationships with their user base. To that end, we
perform a comparative analysis examining two paradigms of
privacy protection: one, based on trusted parties, the second,
based on cryptographic privacy technologies. We consider
the following case studies.
– In Sect. 3.1 we examine private web search, illustrating

through a hypothetical dialogue between a cryptographer
and a skeptical user how conceptions of trust diverge
between a cryptographer’s implicit model and notion of
trust and a popular, commonsense notion of trust.

– In Sect. 3.2 we provide a comparative security analysis
between encrypted instant messaging systems to illus-
trate how the service provider’s adoption of end-to-end
encryption shifts and distributes trust away from service
providers to a wider community of security, privacy, and
cryptography experts.

(3) In Sect. 4, we emphasize the need for legal and policy strate-
gies to support the deployment of cryptographic privacy
technologies, and chart some directions for future work.

2 CRYPTOGRAPHY AND TRUST
This section overviews: (1) cryptographic terminology and assump-
tions; (2) cryptographic and colloquial notions of trust, and where
they may diverge; and (3) chains of trust that arise in cryptography
as deployed in practice, throughout the process of implementation
and deployment of a cryptographic specification.

2.1 Cryptographic assumptions
Cryptographic systems (henceforth, “cryptosystems”) are defined by
an algorithmic specification of how each of their components must
be programmed to function—much like an architectural or engi-
neering blueprint serves as a specification of how each component
of a physical structure must be constructed. Cryptosystems are typ-
ically accompanied by a security analysis or security proof, which
demonstrates that if certain specified conditions hold, then the cryp-
tosystem as described in the specification provides certain security
guarantees (e.g., related to confidentiality, integrity, or availability).
Such conditions are usually called assumptions, because the security
analysis assumes that they are true. Some of these assumptions are
explicitly specified in the cryptography literature, such as compu-
tational hardness assumptions3 or assumptions about the behavior
of parties or devices;4 others, however, are often left implicit in the
cryptography literature, especially those common to all or most
cryptographic protocols. A key, commonly implicit condition is
that the implementation of a cryptosystem—including hardware
devices, software, and human interaction—adheres to the specifi-
cation of the cryptosystem. This condition encompasses that the
software implementation of a cryptosystem is free from bugs and
that hardware devices work as expected. Regrettably, implementa-
tion of cryptosystems and human error pose serious challenges in
practice, and are a far more likely source of failure in cryptosystems
than violation of explicitly specified cryptographic assumptions [7].

To be clear, cryptographic security proofs are generally precise
and rigorous: all they claim to demonstrate is that certain security
guarantees hold in the cryptosystem as described in the specification.
Moreover, security proofs are a critical component of ensuring the
trustworthiness of cryptosystems in practice. Our purpose here is
not to criticize cryptographic analyses for omitting these implicit as-
sumptions, or to characterize them as imprecise or flawed: they are
not. Rather, we wish to highlight that in order to fully understand
cryptographic security claims once they are deployed in practice, it
is essential to account for the software engineering problems and
human aspects of correctly implementing a cryptographic speci-
fication that are widely treated as out of the scope of the field of
cryptography, and thus are not expressed in security guarantees
and trust requirements as stated in the cryptography literature.5

Finally, it also bears note that colloquial discussion of cryptogra-
phy more often omits assumptions and even states unconditional
guarantees, e.g., “in end-to-end encryption, nobody but the sender
and the receiver can read the content of their messages” or “in
Bitcoin, it is not possible for anyone to tamper with data once it
is written into the blockchain.” While such simplified descriptions
3E.g., hardness of integer factorization or inverting a discrete logarithm.
4E.g., involved parties adhere to the protocol specification.
5This is reasonable given the extent of subfield specialization in modern computer
science. Software engineering and human factors are not within cryptographers’
expertise and other computer science subfields are better equipped to deal with them.

CSLAW ’22, November 1–2, 2022, Washington, DC, USA Ero Balsa, Helen Nissenbaum, and Sunoo Park

can be helpful and more accessible in some contexts, they can also
mislead as to the nature and strength of the guarantees cryptogra-
phy provides: no cryptographic tool provides truly unconditional
guarantees in practice.6 A nuanced and more realistic analysis of
the security and privacy properties of a cryptosystem will always
depend on the underlying (explicit or implicit) assumptions.

2.2 Models of trust
Trust is a key concept in security and privacy. The term features
prominently in cryptographic terminology, in technical analyses
of privacy tools in practice, and in public perceptions of privacy
and technology. However, the meaning of trust as a term of art in
cryptography is not always intuitive based on its lay usage. Below,
we briefly examine some semantic nuances, and disambiguate how
the term is used in this paper.

A commonsense notion of trust. Trust is an extraordinarily rich
concept and covers a variety of relationships; it may refer to certain
beliefs about others, attitudes toward them, or even certain feelings
they elicit. Generally, when we trust others, we believe they will
not act, intentionally, contrary to our interests; they won’t harm,
cheat, or betray us. What it means to trust others, however, is
more than believing they will not intentionally harm us; it means
placing our fates in their hands, knowing we are vulnerable to their
actions. This is different from circumstances in which we believe
others will not intentionally harm us because our interests have
been secured against these harms. When reviewing conditions that
philosophers and social scientists have claimed as important for
engendering trust, including interaction history, reputation, known
personal characteristics, relationships of mutuality and reciprocity,
familiar social and professional roles, as well as contextual norms,
it is not surprising that the formation of trust in digital societies,
particularly in digital transactions, over digital networks, and on
digital platforms is challenged [26, 34, 38, 57]. More specifically, not
the mere formation of trust but the formation of reliably grounded
trust is challenged by such conditions as lack of persistent identities
that enable an accrual of histories and reputations, the breakdown
of reciprocity, newfangled social and commercial actors whomay or
may not stand in adversarial relations to us, and uncertainty about
prevailing norms in contexts in transition [11, 44, 45]. It probably
also is not surprising that absent such conditions, people might be
reluctant to trust even as they need to engage in transactions and
communications that typically benefit from a penumbra of trust.
As a consequence, in digital realms, security has come to stand in
for trust so people will continue to engage. This can create a spiral
downward for trust because, if Philip Pettit is right [49], making
oneself vulnerable is a necessary condition for the formation of
trust: if one does not have the opportunity to test others by exposing
oneself to the possibility of harm, how does one learn who is and
is not trustworthy, and for what? Common sense tells us not to
expose ourselves to catastrophic harms, where the cost of learning
who can and cannot be trusted may be fatal—literally or figuratively.
In digital societies, we will need to count on the development of

6Even the classic “one-time pad” encryption scheme, widely known for its simplicity
and unconditional security, relies on deployment details for security in practice. The
term “unconditional security” in this context refers to the absence of cryptographic
hardness or trust assumptions within the traditional cryptographic model.

novel social markers of trust, to augment those that have evolved in
the past as well as the heuristics each of us has developed through
individual experiences.

In cryptography. The cryptography literature refers to parties as
trusted if they are assumed, for the purpose of a security analysis,
to adhere perfectly to behavior that is defined in the specification
of a cryptosystem. Parties are described as untrusted if the security
analysis assumes they may deviate from the specified behavior.7
In a nutshell, cryptographic security guarantees hold as long as
trusted parties follow the specification, regardless of whether un-
trusted parties deviate. Within the context of a given cryptosystem,
cryptographers may refer to the need to trust a party (e.g., a service
provider) if the party is trusted and hence the relevant security
guarantees rely on that party’s adherence to specified behavior.

The literature usually (implicitly) treats parties as monolithic
entities encompassing human(s), software, and hardware devices.
For example, if Alice is trusted, then not only she herself but also her
software and devices are assumed to behave correctly according to
specification; if Company X is trusted, then all the human processes
in the company and the software and devices that the company
controls are assumed to adhere perfectly to the specification.

A trusted party represents a single point of failure with respect to
a given security guarantee because that party has the potential to
unilaterally undermine a cryptosystem’s security. However, entirely
eliminating reliance on trusted parties is usually impractical: the
security guarantees achievable tend to be quite limited when all
parties are modeled as untrusted. One approach cryptographers use
to avoid a single point of failure is to distribute trust across multiple
parties: this means that security guarantees hold provided at least
one of these parties, across whom trust is distributed, adheres to
the cryptosystem specification.

The term trust in cryptography is thus effectively a shorthand for
assumptions about adherence to prescribed behavior as described
in the cryptosystem specification. Certainly, there is a relationship
between the cryptographic term of art and its lay usage: parties
that are untrusted or untrustworthy in the colloquial sense may be
more likely to deviate from the specification. However, there is not
a perfect match. Trustworthy parties in the cryptographic sense
may be untrustworthy in the colloquial sense. As an example, a
cryptosystem may enable two parties to confidentially communi-
cate over an insecure channel, e.g., sending encrypted e-mail, so
that their e-mail and Internet providers cannot eavesdrop on their
conversation. In this scenario, sender and recipient (often called
Alice and Bob) are trusted in the cryptographic model and the po-
tential eavesdroppers are untrusted. However, even if Alice and Bob
follow the cryptosystem’s specification (i.e., in terms of the protocol
and code they run on their computers) and are therefore effectively
trusted in the cryptographic sense, they may be untrusted outside of
the cryptosystem’s scope. Indeed, whether Alice can or should trust
Bob with sensitive information—i.e., whether he is trustworthy in
the colloquial sense—is out of scope, and unrelated to the fact that
Bob is a trusted party in the cryptographic analysis, e.g. Bob may
7In the cryptography literature, trusted parties are also commonly referred to as
honest, and untrusted parties are also commonly referred to as dishonest or malicious—
terminology that can appear to evoke far stronger value judgments and to an audience
outside the field of cryptography. We use only the trusted/untrusted terminology in
this paper, but note the common synonyms here for completeness.

Cryptography, Trust and Privacy: It’s Complicated CSLAW ’22, November 1–2, 2022, Washington, DC, USA

follow the cryptosystem specification (thus remaining “trusted” in
the cryptographic sense) and still choose to reveal the contents
of his communication with Alice through an alternative channel,
outside of the cryptosystem’s purview (thus being “untrusted” in
the colloquial sense). In addition, even highly trustworthy parties in
the colloquial sense cannot be considered foolproof, as deviations
from a specification may occur without malicious intent.

In sum, the cryptographic usage of the term trust should be taken
for just what it is: a technical term of art that has a precise, narrow
meaning that is useful within a specialized field. Cryptographic
trust is about adherence to prespecified behavior, not about trust-
worthiness, interpersonal relationships, or other aspects relevant
to the lay usage of the term.

Parameters of a trust relationship. Trust is relational: it is im-
portant who trusts whom and for what. Or, in the cryptographic
context: who relies upon whom for the correct functioning of what.
The cryptography literature is often lax about these parameters,
leaving one or more of the three implicit. This approach can be
rigorous within the cryptography community, in which there are
established norms about the kinds of trust assumptions intended
by certain set phrases, but can be confusing if the language reaches
a broader audience. This paper aims to specify all three parameters
wherever relevant.

Usage in this paper. We use the terms trusted party, trust as-
sumption, and distributing trust as in the cryptographic terms of
art. Beyond that, unless otherwise specified, we use the term trust
informally, and aim to specify all the relevant parameters (i.e., who,
whom, and for what) each time.

2.3 Cryptography in practice: from
specification to implementation and
deployment

For cryptosystems to be useful in practice, in addition to designing
them and analyzing their security, it is necessary to implement,
deploy and adopt them.

Implementation means writing code that follows the cryptosys-
tem’s specification, so it can be executed as a component of a larger
system that provides a service.8 For example, the specification of
TLS needs to be written in code and embedded in browsers and
servers so that users can request HTTPS-encrypted websites.

Implementation and deployment may introduce vulnerabilities
and reliance on third parties that typically fall out of the scope of
cryptosystems’ design. As mentioned above, most of the cryptogra-
phy literature treats as out of scope the sociotechnical arrangements
that enable users to reasonably believe that the code and the broader
system in which it is embedded are trustworthy. Looking at the
broader picture of a cryptosystem’s lifecycle from specification to

8 In this paper we focus on software implementations, but acknowledge that hardware
security provides the root of trust for any software implementation. In fact, hardware
security clearly highlights how cryptosystems which are secure on paper become
vulnerable to physical attacks (e.g., side-channels) as their specification abstracts away
from the physics of the hardware that enables computing [52]. Hence, while for
illustration purposes we restrict our observations to software implementations and
software infrastructure, similar observations could (and should!) be drawn to account
for the hardware that supports them (e.g., devices, physical networks).

implementation to deployment, however, the reliability and credi-
bility of security guarantees promised by cryptosystems depends
on a complex chain of trust, as we outline next.

Firstly, even if a cryptosystem specification is deemed to be secure,
its implementation in executable code may not be. This highlights
the importance of open standards, disclosed specifications, and
disclosed-source code. Open standards and disclosure of specifica-
tions and code make it easier for stakeholders to agree on and, at
least in principle, verify and test an implementation.

Secondly, even if specification and code are public, most intended
users are unable to test and verify the cryptosystem directly, and
must therefore rely on proxies of trust in order to assess the credibil-
ity of claimed cryptographic privacy guarantees. For example, they
may depend on a cryptographer or developer whom they trust, or
on institutional endorsements (e.g., a NIST standard, or statements
from reputable research institutes or nonprofit organizations) to
support a belief that a cryptosystem—and the system in which it
is embedded—is secure. Of course, reputable institutions may still
make mistakes or behave in bad faith [13, 53].

Thirdly, even expert cryptographers and software engineers are
typically unable to verify with perfect certainty that a particular
cryptosystem implementation is secure. Current computing infras-
tructure represents a tremendous challenge to the verification of
code. Software applications are networked and distributed, as well
as constantly updated: developers routinely rely on third-party code
packages, need to deal with legacy code and systems, and service
providers continuously push updates which, even when including
security patches, make it harder to test and verify by the broader
community [27]. Perhaps surprisingly, the problem of software ver-
ification—i.e., verifying that a given piece of source code conforms
to a given specification of functionality, is an unsolved problem
in computer science—save for very simple or specialized pieces
of code [65]. Furthermore, due to complexities in the compilation
processes that convert the human-readable source code written by
developers to the machine-readable executable code9 that can be
run on devices, it is notoriously challenging to verify with certainty
that a given piece of executable code corresponds exactly to a given
piece of source code.10

Lastly, even a perfect implementation in code can be undermined
by human error (or intentional misbehavior) in necessary human
interactions with the deployed cryptosystem.

Chain of trust. To further illustrate these friction points and com-
plex trust dependencies, let us provide a walk-through of a typical
application’s development lifecycle.

(1) Cryptographer designs cryptosystem The first step starts with
a cryptosystem specification, i.e., an algorithmic description
of how the cryptosystem works, the steps and parties in-
volved. If the specification and its constituent components
are published, other people can verify them, distributing trust
among the crypto community who is able to verify the pri-
vacy guarantees the initial design provides. The community
thus reaches sufficient confidence to trust the cryptosystem
design, even if some vulnerabilities may be hard to detect.

9Sometimes called object code.
10E.g., Mozilla has been working for years on providing such verifiability for its Firefox
browser [62].

CSLAW ’22, November 1–2, 2022, Washington, DC, USA Ero Balsa, Helen Nissenbaum, and Sunoo Park

(2) Developer writes code. A developer implements the cryptosys-
tem specification into code, often embedding it within a
broader system in which the cryptosystem is but a compo-
nent. If the code of the implementation is disclosed, this
distributes trust among the community who is able and
willing to examine and test it (e.g., developers and secu-
rity experts). Even if such a community reaches sufficient
confidence to deem the code secure, the developer may have
(un)intentionally introduced a vulnerability or backdoor that
is hard to detect.

(3) Developer compiles code and creates an installation package.
Developers rarely use their own compilers. Instead they
use compilers that third parties have written and publicly
released. If the compiler is buggy or has been tampered
with,it could introduce vulnerabilities into the executable
code. The developer could also (1) deliberately use a compiler
that introduces a backdoor or (2) simply compile different
source code from the code it publishes as open source.11
Hence, there is reliance on both developer and compiler.12

(4) Developer publishes installation package, e.g., Apple’s App
Store, Google Play, or any other websites and repositories for
non-mobile applications (henceforth, “app store”). To verify
that the application offered for download on the app store
is the same application that the developer uploaded, most
users rely on the app store host (e.g., Apple or Google). For
those with more technical expertise, such reliance on the app
store host is not necessary, as developers can provide digital
signatures showing the authenticity of applications, which
expert users can verify themselves.13 Some non-expert users
may also rely on experts that they consider reputable to
check digital signatures, thereby reducing the extent of their
reliance on the app store hosts.

(5) User installs app. Users must trust that the operating sys-
tem (OS) installs the downloaded app correctly, i.e., as op-
posed to installing amalicious orweakened version of the app.

(6) User opens and uses app. The OS runs the installed app. Users
must trust that the OS executes the app correctly, that it
does not tamper with its execution or leaks details about
it (e.g., OS effectively has control over the app on the user
device). Incorrect functioning of the OS or device (see foot-
note 8) may arise from errors (e.g., software bugs, hardware
glitches) as well as malicious compromise (e.g., malware
such as NSO’s Pegasus [12]).

Further trust requirements arise after initial installation:
– Developers can push updates, prompting users to install
them, thus requiring anew trust assumptions as described
in items 3 to 5 above.

11Recall (see Section 2) that it is currently impractical to verify with perfect confidence
that a complex piece of executable code is really the result of compiling a given piece
of source code.
12Alternatively, users could compile the code themselves, eliminating the dependence
on the developer; however, this is unrealistic for most people, and even then users
need to trust the compilation process.
13Note that relying on digital signatures further shifts trust from the app store host
to the distributed network of trust on which the relevant public-key infrastructure
is built. How trust is construed within public-key infrastructures has been amply
discussed elsewhere [4, 15, 39].

– Threats related to the OS and device (namely, items 5 and 6)
may arise at any time. A compromised operating system or
device can undermine the security even of perfectly imple-
mented, perfectly installed apps.

These chains of trust illustrate how in spite of the initial specifica-
tion of a cryptosystem, its implementation and deployment require
a coordinated interplay of several actors and processes, all of which
must be relied upon not to introduce vulnerabilities that under-
mine the system in which the cryptosystem is embedded—even if
the cryptosystem specification, analyzed in isolation, is provably
secure. In other words, a reasoned belief that an implemented and
deployed cryptosystem provides the security guarantees promised
by the cryptosystem specification depends on many factors beyond
the scope of the cryptosystem’s specification and security analysis.
With this in mind, it is arguably neither surprising nor misguided
that many users conflate security and privacy issues, and neither
understand nor trust the protection that cryptography may offer
to them [22].

3 TWO CASE STUDIES
We present two case studies where we compare trust assumptions
across two paradigms of privacy protection. On the one hand, we
consider services where, from the cryptographic point of view, pri-
vacy protection depends on the service provider as a trusted party.
This paradigm has been previously referred to in the privacy en-
gineering literature as privacy-by-policy, process-oriented privacy
or soft privacy, highlighting that privacy guarantees are derived
from a promise or contract, rather than a technological interven-
tion [20, 36, 59]. On the other hand, we consider services where, in
cryptographic terms, the service provider is an untrusted party and
privacy protection relies on a cryptosystem that the service provider
itself implements. This paradigm has been previously referred to
in the privacy engineering literature as privacy-by-architecture,
or data-oriented privacy and hard privacy, to highlight that pri-
vacy protections are embedded into the system architecture by
design [20, 36, 59]. In the language of cryptographers and privacy
engineers, the second paradigm would remove the need to trust the
service provider: a phrase that means that it is the architecture and
code of the system itself that guarantee privacy protection, rather
than the promise and goodwill of the service provider.

We select two essential services, web search and messaging, as
our case studies. In the first, we confront a cryptographer’s trust
assumption logic with that of an imagined skeptical user that faces
a choice between a search engine that promises privacy protections
exclusively by policy and one that implements a cryptosystem to
blind itself from seeing users’ search queries. In the second, we
compare popular instant messaging (IM) services that implement
end-to-end encryption with an imagined IM service that promises
the same privacy guarantees without relying on cryptography. In
both cases, we illustrate how neither cryptosystem truly elimi-
nates trust in the provider. Rather, trust is shifted or distributed,
sustained by a complex web of trust relationships underlying the
implementation and deployment of any privacy technology.

Cryptography, Trust and Privacy: It’s Complicated CSLAW ’22, November 1–2, 2022, Washington, DC, USA

3.1 Web search
Web search allows users to find online resources (e.g., websites,
images, videos) by querying a search engine with keywords describ-
ing what they seek.14 While the most well known search engine is
Google, we focus on DuckDuckGo (DDG) as a privacy preserving
alternative. We compare DDG to a fictitious search engine that
relies on state-of-the-art cryptography to embed analogous privacy
protections into the system architecture.

Web search and privacy. Search queries can be highly sensitive
and revealing, especially when collected over extended periods of
time. Web search data may reveal gender, age, location, health con-
dition, religious and political affiliation, sexual orientation, daily
routine and frequented locations, life struggles, hobbies and in-
terests, and much more [10, 37, 60, 63]. Moreover, when search
engines such as Google use search query data to personalize search
results and target users with advertisements, users may be served
hyperpersonalized queries and discriminated against, among other
harms that stem from user profiling [47, 61].

Google, DuckDuckGo and "CryptoSearch". Google collects users’
search queries and has a vast network of trackers across the web to
analyze and monetize users’ web browsing behavior. Conversely,
DDG presents itself as an alternative “search engine that doesn’t
track you” [25]. To that end, DDG chooses not to collect any user
data [24]. Note the emphasis on chooses: DDG does not implement
any technology that makes it difficult for it to collect this data, it
simply decides not to implement any code that logs users’ search
queries. Hence, in cryptographic terms, DDG is a trusted party:
users must rely upon DDG to honor its promise and protect their
privacy by not collecting any of their search queries, now or in
future.

Let us now consider a hypothetical cryptographic alternative:
“CryptoSearch”, a search engine that "encrypts" user queries and
search results so that only the user can decrypt them, hiding this
sensitive information even from the search provider itself. Cryp-
tographers have developed sophisticated techniques for private
information retrieval (PIR) [5, 18] that, in theory, provide functional-
ity similar to this. Currently, these PIR techniques are not developed
enough to efficiently implement the complex algorithms of modern
search engines. However, our inquiry concerns not efficiency but
the differences in trust requirements between cryptographic pri-
vacy technologies and promise-based alternatives. As such, we put
aside the efficiency question for the sake of a thought experiment:
the hypothetical CryptoSearch provides an illuminating contrast
with DDG in the discussion that follows.15

Why not settle with a trusted party? DDG’s stated assurances
are very similar to what one would expect from CryptoSearch, but
instead of relying on cryptography to provide those assurances,

14This describes a text-based search engine. Search engines don’t have to be text-based,
but most of them are.
15We could have selected a different cryptographic technology which is currently
efficiently deployable, such as encrypted messaging. However, we found it helpful
to reference a real-world technology that offers promise-based privacy, of which
DuckDuckGo appears to be a relatively rare example.

DuckDuckGo promises its users that it will not collect their informa-
tion.16 From a cryptographers’ viewpoint, DDG is a trusted party.
Yet, how does DDG’s trust-based guarantee fundamentally differ
from the guarantees that a service like CryptoSearch would offer?
Let us consider the following hypothetical exchange between a
skeptical user and a cryptographer:

Skeptical User: What’s the difference between DDG and Cryp-
toSearch? If I wish to prevent the search engine (and other third parties)
from using my search queries, which should I prefer?

Cryptographer: With DDG, the privacy of your search data is
under DDG’s control and you are relying entirely on their promise not
to use it in ways you don’t want. With CryptoSearch, you’re relying
on a technical guarantee, not some humans’ promise. As long as the
cryptosystem that CryptoSearch uses is sound, it is guaranteed that
CryptoSearch cannot misuse your data even if it wants to, because
it cannot "see" your queries—even if the provider changes its mind,
breaks its promise, or is coerced or hacked.

Indeed, CryptoSearch seems to do away with the search engine
provider as a trusted party. Eliminating trusted parties (or eliminat-
ing trust assumptions) is such a common goal in cryptography that
it needs hardly any justification in academic papers: the received
wisdom is that trusted parties provide poorer security and can ben-
eficially be replaced by cryptographic guarantees. But now, let us
consider how the rest of the conversation might play out.

Skeptical User: But if CryptoSearch changes its mind, or is co-
erced or hacked, won’t it just stop using the cryptography?

Cryptographer: Perhaps, but at least you would know that the
code had changed, and probably detect that the cryptography had
been removed.

Skeptical User: How would I be able to tell?
Cryptographer: If the client-side (user) code were disclosed-source,

then you could check the code to see what had changed. Otherwise you
could still reverse-engineer the client code, or do some traffic analysis;
you might be able to detect the change that way. Of course you could
always get a security expert to do those things for you.

Skeptical User: Right, I wouldn’t be able to do those things my-
self. I’d have to place my trust in some humans’ promise after all. I
have to trust cryptographers like you, both when you say that cryp-
tography provides all these strong guarantees, and when you say that
a particular service I’m using correctly deploys that cryptography. So
in the end I would choose between DDG or CryptoSearch depending
on whom I trust more.

The above dialogue is not intended to be realistic but rather to
make a point; namely, to illustrate that the language of eliminating
trust is misleading, both to users and to cryptographers; shifting or
distributing trust would probably bemore apt. To users, shifting trust
is a more accurate description of the choice they face between these
two services. And to cryptographers, the framing of eliminating
trust makes it seem as if cryptographic solutions really remove the
need for trust, as if a cryptosystem would be a replacement for
trust relationships. This is why a cryptographer’s response to a
layperson may not address the latter’s concerns.

16Some of DuckDuckGo’s publicly advertised guarantees are reminiscent of what
one would expect from cryptography. In an interview with Wired, founder Gabriel
Weinberg declared “We protect your search history, even from us” [16].

CSLAW ’22, November 1–2, 2022, Washington, DC, USA Ero Balsa, Helen Nissenbaum, and Sunoo Park

In the next case study, we further examine how the adoption of
cryptographic privacy technologies by service providers shifts and
distributes trust, rather than eliminating it.

3.2 Instant messaging
Instant messaging (IM) refers to online services that enable near-
instantaneous communication between two or more people, e.g.,
WhatsApp and Signal.17

IM and privacy. People use messaging services like WhatsApp
and Signal to communicate with intimate partners, family, friends
and coworkers, among others. As such, IM provides a medium for
some of people’s most private and sensitive conversations.

Online communication was originally devoid of strong privacy
protections. Messages exchanged on early IM services, such as AIM
or MSN’s Messenger, could be easily intercepted in transit [50, 51].
A big shift took place with the normalization of TLS (previously
SSL) encryption and XMPP, enabling service providers to encrypt
in-transit communication, thus preventing network eavesdroppers
from reading users’ messages. However, TLS only encrypts mes-
sages between a user’s device and the service provider, thus still
enabling service providers to read all of their users’ messages. To
cryptographically protect message confidentiality against service
providers themselves, end-to-end encryption (e2ee) is required.

End-to-end encryption. E2ee, as the name suggests, encrypts mes-
sages “end to end,” meaning that only the communicating users
hold the necessary keys to encrypt and decrypt the messages they
send to each other. This means that an IM service provider like
WhatsApp or Signal should not have the ability to decrypt their
users’ messages. Cryptographers would say that e2ee removes the
need to trust the service provider for message confidentiality: since
the provider has no access to user messages’ content to begin with,
there is no need to rely on the provider’s good behavior to guarantee
that the messages will not be misused or mishandled.

E2ee does not address all privacy concerns in IM. Most notably,
e2ee does not protect metadata, this is, information about a user’s
communication other than message content. Metadata includes
users’ contact lists, who they talk to, how often, for how long,
when users are online and their location, among other types of
information. WhatsApp and Signal also differ in their treatment of
metadata: Signal promises (much like DuckDuckGo) to not collect
metadata, whereas WhatsApp states that it may retain and use
metadata for business and other purposes.

E2ee has become the gold standard for message confidentiality
in IM. However, the deployment of e2ee in Whatsapp and Signal
challenges some of the assumptions upon which the privacy guar-
antees of e2ee depend. When the IM provider itself implements
e2ee—namely, the very party e2ee is supposed to protect against—
an interesting conundrum arises: does e2ee truly remove the need
to trust the service providers? The short answer is no. To better
understand how exactly the adoption of e2ee by service providers
shapes trust assumptions supporting message confidentiality guar-
antees, below we present a comparative privacy analysis between
three IM services: WhatsApp and Signal, that implement e2ee and
enable it by default. WhatsApp and Signal implement very similar

17See https://www.whatsapp.com and https://signal.org.

cryptographic protocols, but are organizationally very different: Sig-
nal is a nonprofit whereas WhatsApp is owned by Meta (formerly
Facebook), and Signal’s source code is published whereas What-
sApp’s is not.18 Alongside WhatsApp and Signal, we also consider
“TrustMeIM”, a hypothetical IM service that encrypts messages in
transit (using TLS) but not end-to-end, yet promises not to examine
or store user messages—much like DuckDuckGo’s promises in the
previous case study.

Comparative security analysis.

Message confidentiality against service providers. TrustMeIM has
access to messages in plaintext by default, as they traverse their
servers unencrypted. Thus, message confidentiality requires re-
liance on TrustMeIM’s promise not to use or access users’ mes-
sages. There is no technology preventing TrustMeIM from reading
users’ messages.

As for Signal and WhatsApp, message confidentiality requires
that the client software (i.e., the messaging application running on
the user’s phone), has no unintended functionality that enables the
transfer of data to the service provider. Note that it is not necessary
to break encryption in order to undermine message confidentiality:
a few extra lines of code are all that is needed to instruct the app to
send back unencrypted messages to the server.

In this regard, there is a key difference between Signal andWhat-
sApp. While the two services may implement the same protocol,
Signal’s code is public and available for anyone to review, whereas
WhatsApp’s is not. Secrecy of code substantially hinders the ability
to audit and verify the implementation.

In sum, by publishing all its code, Signal partially distributes
trust among the community of cryptographers and security experts
that have the willingness and commitment to audit and verify this
code. Conversely, by keeping its source code closed, WhatsApp
hinders such independent auditing, thereby requiring heightened
trust in its e2ee implementation.

Surreptitious policy changes. In all three IM services, there is
little protection against a service provider determined to imple-
ment surreptitious changes to undermine message confidentiality
Such surreptitious breaches of message confidentiality might target
particular users’ communications (as in wiretaps), or undermine
message confidentiality across large groups of users: the former, tar-
geted surveillance, would be harder to detect than the latter, mass
surveillance. There is however a significant difference in the cost
and effort required to implement surreptitious changes to message
confidentiality if e2ee is implemented. Because of this, e2ee enables
providers to claim inability to comply with wiretap requests.

TrustMeIM would be the easiest to wiretap, since it already
has access to user messages. Users would have no way of find-
ing out if they have been subjected to a wiretap, barring someone
(e.g., an insider from law enforcement, the courts, or the service
provider) revealing its existence. In fact, in all three services, em-
ployees in the know about these wiretapping programs could ex-
pose their employers.

Wiretapping WhatsApp or Signal, on the other hand, would
require either exploiting existing flaws in the implementation (in-
tentional or not), or creating and distributing specific vulnerabilities
18WhatsApp is built on the Signal protocol with some modifications.

https://www.whatsapp.com
https://signal.org

Cryptography, Trust and Privacy: It’s Complicated CSLAW ’22, November 1–2, 2022, Washington, DC, USA

(e.g., by forcing an update on selected users or devices). Although
regular users would unlikely be able to detect such vulnerabilities,
the larger cryptography and security community could potentially
expose such flaws and vulnerabilities. This, however, can be an
arduous process, and requires a commitment from the community
that is often predicated on free labor. Vulnerabilities can go unde-
tected for years, and those who do discover them may choose not
to disclose them to benefit from a lucrative zero-days market [1, 55].
In any case, even targeted surveillance would be more detectable
than TrustMeIM’s wiretapping.

Moreover, users’ devices and the OS running on them would
be vulnerable to exploits by external adversaries (i.e., beyond the
service provider) such as law enforcement and governmental intel-
ligence agencies. A case in point is NSO’s Pegasus, a Trojan horse
that exploited OS vulnerabilities to gain access to cellphones’ text
messages, calls and their microphones and cameras, among other
capabilities [12]. Hence, the adoption of e2ee forces adversaries to
attack end-user devices, to some extent preventing the convenience
of just collecting all messages being relayed by the service provider.
In this sense, e2ee also makes targeted surveillance much harder.

To conduct mass surveillance, the strategic vulnerabilities or
backdoors required to conduct targeted surveillance (as described
above) would have to be deployed at scale, for the vast majority of
the user base. This would render the vulnerabilities more visible,
and the ease of detecting them higher.

Overt policy changes. In all three IM services, there is no protec-
tion against the service provider changing its policy and deciding
to undermine message confidentiality. TrustMeIM could decide to
start collecting and analyzing users’ messages; WhatsApp and Sig-
nal could decide (willingly or under pressure or coercion) to switch
off e2ee.

Factors such as reputation, willingness to moderate content, and
willingness to cooperate with law enforcement would likely influ-
ence providers’ approaches to message confidentiality. Arguably,
it could be easier for TrustMeIM to revert their policy of message
confidentiality, as privacy expectations may already be lower. Con-
versely, the implementation of e2ee signals a stronger commitment
to message confidentiality. Hence, breaking or switching off e2ee
might be seen as a harsher reversal of that commitment, and one
that would anger and disappoint those users who adopted Signal
or Whatsapp for their deployment of e2ee.

Additional factors could influence the willingness of a provider
to shift policies. Signal, as a non-profit, stands in opposition to
the data-extractive business model that most tech companies rely
on today. Signal stores minimal user data about its users and has
been consistently pushing the state of the art in e2ee. Conversely,
whileWhatsapp provides e2ee encryption, its privacy policy reveals
that collection of metadata is extensive and open to monetization
by Meta. Meta’s own reputation cannot but color user’s privacy
expectations. Moreover, Signal’s reputation and far smaller userbase
suggests that its userbase may have more stringent expectations
of privacy than the far larger and more heterogeneous WhatsApp
userbase [28]. Signal’s userbase may thus be far more unwilling to
tolerate a regressive change to Signal’s privacy policy [28]. On the
other hand, competition from other more privacy-protective IM
apps could conceivably discourage Whatsapp from discontinuing

e2ee (e.g., a recent change to its privacy policy to allow companies
to connect with customers on Whatsapp led to a public outcry
and some users leaving Whatsapp for alternatives such as Signal
and Telegram [43]).

Discussion. Adoption of e2ee by the provider thus has an impact
on trust that differs from the traditional cryptography model, in
which users would rely on e2ee to protect the confidentiality of
their communications against any unauthorized parties, e.g., the
government, the Internet service provider (ISP), or the IM provider.
Certainly, technologically savvy TrustMeIM users could adopt e2ee
on their own to protect themselves against TrustMeIM. However,
this model does not translate well when instead of users resorting
to e2ee to protect themselves against an IM provider, it is the IM
provider itself implementing e2ee. In this setting, e2ee does not
perform the same function as it does in the traditional cryptography
model. Certainly, it serves to protect message confidentiality, but
trust must still be placed squarely on the service provider. An IM
provider does not deploy e2ee so that users do not have to trust it
with the confidentiality of their messages; rather, e2ee reinforces
the trust that users place on the provider. By deploying e2ee, the
provider is essentially telling users and the wider community: “I
have no desire to read, analyze, or misuse your messages, and I am
committed to implementing technological measures to make it difficult
for myself and others to do so”. In situations such as misbehaving
employees, faulty system security that exposes the service’s servers
to external attackers or intelligence agencies over-relying on com-
munications surveillance, e2ee introduces an additional barrier to
protect the confidentiality of users’ communications. Similarly, e2ee
works as a shield for IM providers to refuse turning user data to
law enforcement or contributing to a surveillance infrastructure.

Still, e2ee does not ultimately prevent a truly adversarial service
provider from breaching message confidentiality if it wishes to.
Hence, e2ee has a performative function on top of the privacy
guarantees it provides. It is a token of goodwill, a way for the IM
provider to keep itself honest, tie its hands behind its back—a sort
of checks and balances. Thus, whereas for a cryptographer e2ee
is a tool to avoid placing trust in the provider, in practice, when
adopted by a provider, it becomes a tool to build trust.

Yet the provider’s adoption of e2ee still distributes trust, relying
on a delicate balance of institutional trust and experts willing to
verify the provider’s claims. The analysis above in fact shows that
trust in practice is far more complex and multidimensional than
the concept of trust traditionally inherent in cryptosystems’ design.
Trust is in the eye of the beholder. Our analysis shows how the
perspective of a layperson, a regular user, unable to verify or test
code themselves, is radically different from a crypto, security or
privacy expert. Regular users cannot be expected to rely on the
same relationships of trust as experts do to obtain privacy guar-
antees online, partly because they are unlikely to understand the
properties of the cryptosystem and likely to conflate the links along
the chain of trust (see Sect. 2.3). Experts, on the other hand, still
rely on a delicate balance of trust relationships within the broader
community: not every crypto expert can test and verify every cryp-
tosystem currently in use, so we implicitly rely on the expertise
and know-how of others.

CSLAW ’22, November 1–2, 2022, Washington, DC, USA Ero Balsa, Helen Nissenbaum, and Sunoo Park

3.3 Lessons
According to privacy-by-design principles, service providers should
adopt organizational and technological solutions to protect, by de-
sign and by default, users’ privacy. Cryptographic privacy tech-
nologies are at the forefront of privacy engineering and privacy
by design, often promising privacy protections against the service
provider itself. A cryptographer would phrase this as eliminating
the trust on the service provider to protect users’ privacy.

The case studies above provide a comparison between a purely
organizational approach to privacy protection (provider as a trusted
party) and a cryptographic approach that implicitly considers the
service provider as an untrusted party that users must be protected
from. Whereas a cryptographer’s promise would be that adoption
of cryptographic privacy technologies eliminates the need to rely
on the untrusted service provider, our analysis illustrates why this
does not happen in practice, especially when the provider itself
implements these technologies. Instead, cryptography shifts and
shapes a new delicate balance of trust between users, (security,
privacy, cryptography) experts and service providers that users
themselves are likely to remain oblivious to.

This mismatch between a cryptographer’s promise of eliminating
trust is partly predicated in outdated computing and user paradigms:
a paradigm where users control their devices and adopt privacy
technologies by themselves to fend off an adversarial, untrusted
service provider. In reality, the modern computing paradigm makes
it incredibly difficult for users to adopt these technologies on their
own: even if users did not trust WhatsApp’s e2ee, users cannot add
an encrypting plugin or extension to WhatsApp to encrypt their
messages because of current mobile OS sandboxing restrictions.

Moreover, users cannot unilaterally adopt certain privacy tech-
nologies even if they wished to. A tool like CryptoSearch requires
service provider cooperation, i.e., the service provider is the only
one who can deploy it. And so the provider retains the power to
undermine it. It is therefore crucial that complementary measures
are in place to support cryptographic solutions. Privacy protection
requires reliance on humans and organizations, whether that in-
volves implementing cryptographic code or making sure service
providers abide by their implementing promises. We explore some
of these measures next.

4 PATHS FORWARD
In this section we explore a range of complementary measures,
both technical and non-technical, to support the deployment of
cryptographic privacy technologies. In essence, we ask:

What legal, organizational, technical, or other measures
could support cryptographic privacy technologies

where traditional modeling assumptions are in doubt?

While a thorough study of this question is beyond the scope of
a single paper, we highlight the question for future research, and
outline preliminary directions for further exploration. In particular,
we hope to promote explicit and context-specific consideration of
this question when analysing existing or planned deployments of
cryptographic privacy technologies.

Firstly, we note that technical measures may help, but they
alone are insufficient. Hence, organizational and legal measures
that enhance the transparency, accountability, and enforceability

of promised privacy protection—cryptographic or otherwise—are
essential to bolster the reliability of privacy guarantees at the in-
evitable points where their realization relies on third-party (human
and organizational) behavior. As such, the following discussion is
lighter on technical measures than legal and organizational ones.

The rest of this section discusses technical, organizational, policy,
and legal measures in turn. While not all of these will be a perfect
fit for every situation in which a privacy technology is deployed,
we believe most have broad applicability.

4.1 Technical and organizational safeguards
– Avoid unnecessary complexity in system design.19
– Publish (crypto)system specifications.
– Publish source code.
– Provide signed code, binary transparency, and reproducible
builds wherever practicable.

– Encourage or commission independent code audits.
– Promote, develop and adopt open standards and interoper-
ability [35, 56].

– Enforce robust access-control policies for insiders.
– Maintain detailed activity logs and audit them routinely.
– Establish incident reporting and investigation processes.
– Establish a bug bounty program, and set clear guidelines as
to what discoveries will be considered a privacy bug.

– Openly commit to whistleblower protection policies.
– Publish clear policies about allowed data use and access.
– Publish clear policies about any commitments to continue
providing privacy services into the future.

4.2 Legal safeguards
To further support the privacy properties that cryptosystems afford,
organizations may choose to make them credibly legally enforce-
able. Making contractual commitments (e.g., in terms of service)
to the organizational and policy safeguards described above is use-
ful, but only a starting point. Contracts may be as ineffective as
cryptography unless contract violations are evident to the party
harmed, and that party has the resources and patience to pursue
legal action against the violating party.

Thus, to ensure meaningful private enforceability: (1) organi-
zations should implement transparency and auditing processes
that render it likely that deviations from contractual commitments
would be readily detectable and demonstrable (perhaps reinforced
by technical measures); and (2) organizations should commit to
clearly defined consequences and penalties in case of discovered
violations (e.g., reviews and reports after the fact, curtailment of
certain activities, and/or monetary payouts to affected users or char-
ities). Additionally, to enhance enforceability beyond the defaults
provided by the legal system, organizations may commit to honor
such penalties and consequences through extrajudicial processes,
reducing the likelihood of costly litigation as a barrier to enforce-
ment. For example, organizations might pledge to award a “privacy
bounty” to those who report deviations from the organization’s
stated privacy commitments, and/or to put funds in escrow with
19E.g., the phrase “Keep It Simple, Stupid” (KISS) refers to a design principle originating
from the U.S. Navy in 1960, which has since gained popularity in software development
and security. The underlying idea is that simpler systems work more reliably and can
be more reliably secured, so unnecessary complexity should be avoided [19, 69].

Cryptography, Trust and Privacy: It’s Complicated CSLAW ’22, November 1–2, 2022, Washington, DC, USA

a neutral arbiter who is charged with paying out privacy-related
claims. Finally, some of the voluntary safeguards thus far mentioned
may be overridden by government subpoenas or other mandates;
to reduce the likelihood of such activities going undetected, organi-
zations may choose to implement canaries [46].

A further benefit of clear commitments by private parties to or-
ganizational privacy practices—and of establishing credible mecha-
nisms to make violations evident to parties harmed—is that the U.S.
Federal Trade Commission (FTC) would then have jurisdiction to
investigate and penalize violations of the stated privacy practices,
as they would fall within the scope of “unfair and deceptive prac-
tices” as defined by the FTCAct.20 Though regulatory regimes differ
internationally, written commitments to privacy practices and evi-
dence of violations may similarly facilitate oversight by consumer
protection and data protection authorities in other countries.

The legal measures discussed thus far depend on voluntary adop-
tion by organizations. While this limits their scope, it also means
that they could be instated in the immediate term upon the ini-
tiative of individual organizations. New legislative or regulatory
measures are likely to take much longer to establish, but could
provide stronger safeguards. In general, productive legislative or
regulatory directions should encourage or mandate the adoption
of technical and organizational measures such as outlined above. A
few examples follow.

– Obliging cryptographic service providers that meet certain
requirements (e.g., a threshold in user base or revenue) to
demonstrate heightened trustworthiness, such as by under-
going independent privacy audits.

– Requiring providers to publish the results of any independent
privacy audits—or, at the very least, to disclose them to a
competent government agency with authority to pursue
further investigation, such as the FTC.

– Designating and providing resources to a government agency
or other organization to enforce and conduct privacy audits.

– Allocating public funds so that demonstrations of trustwor-
thiness, such as independent privacy audits, are accessible to
all interested cryptographic service providers (e.g., subsidies
for nonprofits).

– Establishing a heightened duty of care for cryptographic
service providers above a certain size (perhaps similar to
some existing information fiduciary proposals [8]).

– Suggesting enhanced penalties for otherwise actionable harm
related to providers’ misuse or misrepresentation of privacy
technologies.

– Creating a private right of action, rooted in consumer pro-
tection law, that users (or classes of users or nonprofits ad-
vocating on behalf of users) could raise against providers for
misuse or misrepresentation of privacy technologies and/or
cryptography, even if no otherwise actionable harm can be
proven. The elements of such a claimmight be scoped around
reasonable reliance and exposure to risk: (1) that users rea-
sonably relied on providers not to misuse or misrepresent the
technology; (2) that users placed themselves at significant
privacy or other risk based on such reliance, would not have

20Federal Trade Commission Act, 15 U.S.C. §41–58, at §45.

done so but for such reliance, and the providers’ misuse or
misrepresentation aggravated that risk.

– Allocating public funds and convening independent expert
bodies towards the development of open standards.

– Encouraging the use of, and interoperation via, open stan-
dards, e.g., by offering capped or reduced penalties for se-
curity or privacy incidents for organizations that use open
standards according to software engineering and security
best practices.

4.3 Discussion
Our emphasis on providers in the above is significant. The burden
should be on providers, not users, to ensure privacy technologies
are understood and used safely, and not to offer unreasonably risky
products. Much as in consumer protection law, providers are bet-
ter informed, and generally are positioned to be the “lesser cost
avoider”. Furthermore, where providers may be naturally incen-
tivized to cut corners, they would often be able to do so in a way that
would be difficult or impossible for consumers to detect; therefore,
placing liability and auditing obligations on providers is essential
to effectively achieving the privacy protections sought.

However, an important counterbalancing consideration when
designing mandates for providers is to promote the broader policy
goal underlying strengthened privacy regulation: namely, to en-
courage the adoption of privacy technologies. Imposing additional
burdens on organizations that voluntarily adopt cryptographic pri-
vacy technologies could backfire by discouraging the adoption of
such technologies in the first place—especially where, as now, ex-
isting privacy regulation does not mandate privacy protection at
the level that cryptographic privacy technologies provide. Hence,
the measures outlined above should be considered in combination
with complementary measures that encourage (or at least do not
make more difficult) the adoption of privacy technologies. These
could include broader privacy protection requirements for more
companies to “level the playing field” for those providing crypto-
graphic protections, or other types of incentives, such as tax breaks
or safe harbors for adopting organizations that comply with one or
more measures listed above (e.g., published code and independent
audits), and meet security best practices in their deployment.

Providers of supporting infrastructure for cryptographic privacy
technologies, such as app stores and code repositories, are also
critical to these technologies’ trustworthiness, as discussed in detail
in Sect. 2.2. Though the discussion above refers mainly to privacy
technology providers, many of the suggested measures may be
productively applied to supporting infrastructure providers too.
Furthermore, since providers of centralized supporting infrastruc-
ture can sometimes function as effective gatekeepers to market
entry by privacy technology providers, regulation to encourage
(or not make more difficult) the adoption of privacy technology
should also discourage or penalize infrastructure providers from im-
posing disproportionate barriers for privacy technology providers.
Looking ahead longer term, these problems would be alleviated by
reducing the extent of technological dependence and gatekeeper
roles in the “chain of trust” (discussed in Sect. 2.2) that technologies
today tend to rely on.

CSLAW ’22, November 1–2, 2022, Washington, DC, USA Ero Balsa, Helen Nissenbaum, and Sunoo Park

Finally, added obligations on users should be avoided. Naturally, if
users cause otherwise actionable harm through the use of a privacy
technology (e.g., harassment via private messaging), then they may
be properly liable under existing law. However, there should be no
liability for users for simply using a provider’s product or service
in a manner not anticipated or endorsed by the provider—even if
such use entails privacy risk. In other words, companies should
not be in a position to shift liability for a privacy incident to the
user by claiming that the user “misused” a privacy technology
which, if used correctly, would not have led to the incident. Not
only does this approach again mirror consumer protection law, it
also promotes essential research that may involve experimenting
with privacy technologies: such research may discover weaknesses
in existing technologies, from which we can learn, and is necessary
to improving computer and Internet security over time [48].

5 CONCLUSION
Cryptography is at the heart of modern privacy technologies, en-
abling stringent data confidentiality properties. The cryptography
literature often informally claims that cryptography eliminates the
need for trust. In other words, cryptography enables users to no
longer need to trust service providers to protect their privacy, as
these tools protect them even against service providers. The narra-
tive goes that privacy is thus protected by design and by default,
embedded into system design, automatically enforced by code.

And yet, despite their apparent promise, cryptographic privacy
technologies have seen limited adoption in practice, while, at the
same time, the most popular cryptographic privacy technologies
have been implemented by the very service providers these tech-
nologies purportedly protect users from. Hence, the adoption of
privacy technologies by supposedly adversarial service providers
highlights a mismatch between traditional models of trust in cryp-
tography and the trust relationships that underlie deployed tech-
nologies in practice. While this mismatch is well known to experts
in the cryptography community, its consequences have been under-
studied and understated in practice, emboldening service providers
to peddle misleading claims and fostering a false sense of security.

This paper has sought to highlight, document and better under-
stand this mismatch. To that end, we have provided a description of
the divergence between conceptualizations of trust in cryptography
and a commonsense notion of trust. We have described how cryp-
tographic privacy guarantees operate within a limited model that
abstracts away from complex relationships of trust in the modern
computing ecosystem, from the development of software to the
provision of online services, including control over user devices and
the software that runs on them. Moreover, we have performed a
comparative analysis between two paradigms of privacy protection:
one, based on trusted parties, the second, based on cryptographic
privacy technologies. This comparative analysis enables us to il-
lustrate how, far from removing trust in the provider, adopting
cryptographic privacy technologies shifts trust to a broader com-
munity of security and privacy experts, enabling in turn service
providers to implicitly build and reinforce trust relationships with
its user base.

Lastly, these observations have important implications for pol-
icy making and the broader regulation of privacy online. While a

technocentric or cryptocentric approach may suggest that crypto-
graphic privacy technologies are the solution to complex sociotech-
nical problems, the deployment of these technologies requires a
robust arrangement of complementary technical and non-technical
measures to support them. This paper has charted a few tentative
steps in this direction.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their thought-
ful and helpful reviews, which greatly contributed to improve
this paper. This material is based upon work supported by DARPA
under Agreement No. HR00112020021. Any opinions, findings and
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the United States Government or DARPA. SP’s research is addi-
tionally supported by a Computing Innovation Fellowship, funded
by the National Science Foundation under Grant #2127309 to the
Computing Research Association.

REFERENCES
[1] Lillian Ablon and Andy Bogart. 2017. Zero days, thousands of nights: The life and

times of zero-day vulnerabilities and their exploits. Rand Corporation.
[2] Ruba Abu-Salma, Elissa M Redmiles, Blase Ur, and Miranda Wei. 2018. Exploring

User Mental Models of End-to-End Encrypted Communication Tools. In 8th
USENIX Workshop on Free and Open Communications on the Internet (FOCI 18).

[3] Ruba Abu-Salma, M Angela Sasse, Joseph Bonneau, Anastasia Danilova, Alena
Naiakshina, and Matthew Smith. 2017. Obstacles to the adoption of secure
communication tools. In 2017 IEEE Symposium on Security and Privacy (S&P).
IEEE, 137–153.

[4] Carlisle Adams and Steve Lloyd. 1999. Understanding public-key infrastructure:
concepts, standards, and deployment considerations. Sams Publishing.

[5] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.
2016. XPIR: Private information retrieval for everyone. Proceedings on Privacy
Enhancing Technologies 2016, 2 (2016), 155–174.

[6] Jay Aikat, Aditya Akella, Jeffrey S. Chase, Ari Juels, Michael K. Reiter, Thomas
Ristenpart, Vyas Sekar, and Michael Swift. 2017. Rethinking security in the era
of cloud computing. IEEE Security & Privacy 15, 3 (2017), 60–69.

[7] Ross J. Anderson. 1994. Why Cryptosystems Fail. Commun. ACM 37, 11 (1994),
32–40. https://doi.org/10.1145/188280.188291

[8] Jack Balkin. 2014. Information Fiduciaries in the Digital Age. Balkinization.
Online at https://balkin.blogspot.com/2014/03/information-fiduciaries-in-digital-
age.html. Last retrieved on Aug 15, 2022.

[9] Ero Balsa, Filipe Beato, and Seda Gürses. 2014. Why Can’t Online Social Networks
Encrypt?. In Proceedings of W3C Workshop Privacy UserCentric Controls.

[10] Michael Barbaro and Tom Zeller. 2006. A face is exposed for AOL searcher no.
4417749. Online at https://www.nytimes.com/2006/08/09/technology/09aol.html.
Last retrieved on Mar 14, 2022.

[11] Adam Barth, Anupam Datta, John C. Mitchell, and Helen Nissenbaum. 2006.
Privacy and contextual integrity: Framework and applications. In 2006 IEEE
symposium on security and privacy (S&P’06). IEEE, 15–pp.

[12] Ronen Bergman and Mark Mazzetti. 2022. The Battle for the World’s Most Power-
ful Cyberweapon. Online at https://www.nytimes.com/2022/01/28/magazine/nso-
group-israel-spyware.html. Last retrieved on Mar 7, 2022..

[13] Daniel J Bernstein, Tanja Lange, and Ruben Niederhagen. 2016. Dual EC: A
standardized back door. In The New Codebreakers. Springer, 256–281.

[14] Patrik Bichsel, Jan Camenisch, Thomas Groß, and Victor Shoup. 2009. Anony-
mous credentials on a standard Java Card. In Proceedings of the 16th ACM confer-
ence on Computer and communications security. 600–610.

[15] Matt Blaze, Joan Feigenbaum, and Jack Lacy. 1996. Decentralized trust manage-
ment. In Proceedings 1996 IEEE Symposium on Security and Privacy (S&P). IEEE,
164–173.

[16] Matt Burgess and Victoria Woollaston-Webber. 2017. DuckDuckGo: what is it
and how does it work? Online at https://www.wired.co.uk/article/duckduckgo-
anonymous-privacy. Last retrieved on Mar 13, 2022..

[17] David Chaum. 1985. Security without identification: Transaction systems to
make Big Brother obsolete. Commun. ACM 28, 10 (1985), 1030–1044.

[18] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private
Information Retrieval. J. ACM 45, 6 (1998), 965–981. https://doi.org/10.1145/
293347.293350

https://doi.org/10.1145/188280.188291
https://balkin.blogspot.com/2014/03/information-fiduciaries-in-digital-age.html
https://balkin.blogspot.com/2014/03/information-fiduciaries-in-digital-age.html
https://www.nytimes.com/2006/08/09/technology/09aol.html
https://www.nytimes.com/2022/01/28/magazine/nso-group-israel-spyware.html
https://www.nytimes.com/2022/01/28/magazine/nso-group-israel-spyware.html
https://www.wired.co.uk/article/duckduckgo-anonymous-privacy
https://www.wired.co.uk/article/duckduckgo-anonymous-privacy
https://doi.org/10.1145/293347.293350
https://doi.org/10.1145/293347.293350

Cryptography, Trust and Privacy: It’s Complicated CSLAW ’22, November 1–2, 2022, Washington, DC, USA

[19] Tom Dalzell. 2009. The Routledge Dictionary of Modern American Slang and
Unconventional English. Taylor & Francis. https://books.google.com/books?id=
5F-YNZRv-VMC&pg=PA595 p. 595.

[20] George Danezis. 2007. Introduction to privacy technology. Katholieke University
Leuven, COSIC: Leuven, Belgium (2007).

[21] Primavera De Filippi, Morshed Mannan, andWessel Reijers. 2020. Blockchain as a
confidencemachine: The problem of trust & challenges of governance. Technology
in Society 62 (2020), 101284.

[22] Sergej Dechand, Alena Naiakshina, Anastasia Danilova, and Matthew Smith.
2019. In encryption we don’t trust: The effect of end-to-end encryption to the
masses on user perception. In 2019 IEEE European Symposium on Security and
Privacy (EuroS&P). IEEE, 401–415.

[23] Claudia Diaz, Omer Tene, and Seda Gürses. 2013. Hero or villain: The data
controller in privacy law and technologies. Ohio St. LJ 74 (2013), 923.

[24] DuckDuckGo. 2012. Privacy policy. https://duckduckgo.com/privacy. Last re-
trieved on Mar 13, 2022.

[25] DuckDuckGo. 2022. About. https://duckduckgo.com/about. Last retrieved on
Aug 11, 2022.

[26] Francis Fukuyama. 1995. Trust. New York: Free Press Paperbacks.
[27] Rafa Galvez and Seda Gürses. 2018. The Odyssey: Modeling privacy threats in

a brave new world. In 2018 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). IEEE, 87–94.

[28] Matthew Green. 2020. Why is Signal asking users to set a PIN, or “A few thoughts
on Secure Value Recovery”. Online at https://blog.cryptographyengineering.
com/2020/07/10/a-few-thoughts-about-signals-secure-value-recovery/. Last re-
trieved on Mar 7, 2022..

[29] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty, Lorenzo Alvisi,
andMichaelWalfish. 2016. Scalable and private media consumptionwith Popcorn.
In 13th USENIX Symposium on Networked Systems Design and Implementation
(NSDI’16). 91–107.

[30] SedaGürses andClaudia Diaz. 2013. Two tales of privacy in online social networks.
IEEE Security & Privacy 11, 3 (2013), 29–37.

[31] Seda Gürses, Carmela Troncoso, and Claudia Diaz. 2011. Engineering privacy by
design. Computers, Privacy & Data Protection 14, 3 (2011), 25.

[32] Seda Gürses, Carmela Troncoso, and Claudia Diaz. 2015. Engineering privacy by
design reloaded. In Amsterdam Privacy Conference, Vol. 21.

[33] Seda Gürses and Joris Van Hoboken. 2018. Privacy after the agile turn. In The
Cambridge Handbook of Consumer Privacy, E. Selinger, J. Polonetsky, and O. Tene
(Eds.). Cambridge University Press, 579–601.

[34] Russell Hardin. 1993. The street-level epistemology of trust. Politics & society 21,
4 (1993), 505–529.

[35] Matthew Hodgson. 2022. Interoperability without sacrificing privacy: Matrix and
the DMA. Online at https://matrix.org/blog/2022/03/25/interoperability-without-
sacrificing-privacy-matrix-and-the-dma. Last retrieved on Aug 11, 2022..

[36] Jaap-Henk Hoepman. 2014. Privacy design strategies. In IFIP International Infor-
mation Security Conference. Springer, 446–459.

[37] Rosie Jones, Ravi Kumar, Bo Pang, and Andrew Tomkins. 2007. "I know what you
did last summer" — Query logs and user privacy. In Proceedings of the sixteenth
ACM conference on Conference on information and knowledge management. 909–
914.

[38] Roderick M Kramer. 1999. Trust and distrust in organizations: Emerging perspec-
tives, enduring questions. Annual review of psychology 50, 1 (1999), 569–598.

[39] Dimitrios Lekkas. 2003. Establishing and managing trust within the public key
infrastructure. Computer Communications 26, 16 (2003), 1815–1825.

[40] Carlos Aguilar Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.
2016. XPIR: Private information retrieval for everyone. Proceedings on Privacy
Enhancing Technologies 2016 (2016), 155–174.

[41] Arvind Narayanan. 2013. What happened to the crypto dream?, part 1. IEEE
security & privacy 11, 2 (2013), 75–76.

[42] Arvind Narayanan. 2013. What happened to the crypto dream?, part 2. IEEE
Security & Privacy 11, 3 (2013), 68–71.

[43] Lily Hay Newman. 2021. WhatsApp’s New Privacy Policy Just Kicked In. Here’s
What You Need to Know. Online at https://www.wired.com/story/whatsapp-
privacy-policy-facebook-data-sharing/. Last retrieved on Mar 7, 2022..

[44] Helen Nissenbaum. 2001. Securing trust online: Wisdom or oxymoron? BUL Rev.
81 (2001), 635.

[45] Helen Nissenbaum. 2004. Will Security Enhance Trust online, or supplant it? In
Trust and distrust within organizations: Emerging perspectives, enduring questions,

R. Kramer and K. Cook (Eds.). Russell Sage Publications, 155–188.
[46] Kurt Opsahl. 2014. Warrant Canary Frequently Asked Questions. https://www.

eff.org/deeplinks/2014/04/warrant-canary-faq.
[47] Eli Pariser. 2011. The filter bubble: How the new personalized web is changing what

we read and how we think. Penguin.
[48] Sunoo Park and Kendra Albert. 2020. A Researcher’s Guide to Some Legal Risks

of Security Research. A joint publication of the Cyberlaw Clinic at Harvard Law
School and the Electronic Frontier Foundation.

[49] Philip Pettit. 1995. The cunning of trust. Philosophy & Public Affairs 24, 3 (1995),
202–225.

[50] Scarlet Pruitt. 2003. AOL adds encryption to its corporate IM. Online
at https://www.computerworld.com/article/2571336/aol-adds-encryption-to-its-
corporate-im.html. Last retrieved on Mar 14, 2022..

[51] John Rittinghouse and James F. Ransome. 2005. IM Instant Messaging Security.
Elsevier.

[52] Masoud Rostami, Farinaz Koushanfar, and Ramesh Karri. 2014. A primer on
hardware security: Models, methods, and metrics. Proc. IEEE 102, 8 (2014), 1283–
1295.

[53] Bruce Schneier, Matthew Fredrikson, Tadayoshi Kohno, and Thomas Ristenpart.
2015. Surreptitiously weakening cryptographic systems. Cryptology ePrint
Archive (2015).

[54] Svenja Schröder, Markus Huber, David Wind, and Christoph Rottermanner. 2016.
When Signal hits the fan: On the usability and security of state-of-the-art secure
mobile messaging. In European Workshop on Usable Security. IEEE. 1–7.

[55] Guido Schryen. 2011. Is open source security a myth? Commun. ACM 54, 5
(2011), 130–140.

[56] Ross Schulman. 2022. We Don’t Have to Sacrifice Encryption to Achieve Mes-
saging Interoperability. Online at https://www.newamerica.org/oti/blog/we-
dont-have-to-sacrifice-encryption-to-achieve-messaging-interoperability/. Last
retrieved on Aug 11, 2022.

[57] Adam B. Seligman. 1997. The Problem of Trust. Princeton University Press.
[58] Sujoy Sinha Roy, Furkan Turan, Kimmo Jarvinen, Frederik Vercauteren, and

Ingrid Verbauwhede. 2019. FPGA-based high-performance parallel architec-
ture for homomorphic computing on encrypted data. In 2019 IEEE International
symposium on high performance computer architecture (HPCA). IEEE, 387–398.

[59] Sarah Spiekermann and Lorrie Faith Cranor. 2008. Engineering privacy. IEEE
Transactions on software engineering 35, 1 (2008), 67–82.

[60] Seth Stephens-Davidowitz. 2017. Everybody lies: how Google search reveals
our darkest secrets. Online at https://www.theguardian.com/technology/2017/
jul/09/everybody-lies-how-google-reveals-darkest-secrets-seth-stephens-
davidowitz. Last retrieved on Mar 13, 2022..

[61] Latanya Sweeney. 2013. Discrimination in online ad delivery. Commun. ACM 56,
5 (2013), 44–54.

[62] Gregory Szorc. 2018. Deterministic Firefox Builds. https://gregoryszorc.com/
blog/2018/06/20/deterministic-firefox-builds.

[63] Omer Tene. 2008. What Google knows: Privacy and Internet search engines.
Utah L. Rev. (2008), 1433–1492.

[64] Marten Van Dijk and Ari Juels. 2010. On the Impossibility of Cryptography Alone
for Privacy-Preserving Cloud Computing. In 5th USENIX Workshop on Hot Topics
in Security (HotSec’10).

[65] Hans van Vliet. 2008. Software Engineering: Principles and Practice (3 ed.). Wiley.
[66] Elham Vaziripour, Justin Wu, Mark O’Neill, Daniel Metro, Josh Cockrell, Timothy

Moffett, JordanWhitehead, Nick Bonner, Kent Seamons, and Daniel Zappala. 2018.
Action needed! Helping users find and complete the authentication ceremony
in Signal. In Fourteenth Symposium on Usable Privacy and Security (SOUPS 2018).
47–62.

[67] Ari Ezra Waldman. 2021. Industry Unbound: The Inside Story of Privacy, Data, and
Corporate Power. Cambridge University Press.

[68] Whatsapp. 2021. About end-to-end encryption. Online at https://faq.whatsapp.
com/791574747982248/. Last retrieved on Aug 3, 2022.

[69] David A. Wheeler. 2015. Secure Programming HOWTO (3.72 ed.). 84 pages.
[70] Alma Whitten and J. Doug Tygar. 1999. Why Johnny Can’t Encrypt: A Usability

Evaluation of PGP 5.0. In USENIX Security Symposium, Vol. 348. 169–184.
[71] Justin Wu and Daniel Zappala. 2018. When is a tree really a truck? Exploring

mental models of encryption. In Fourteenth Symposium on Usable Privacy and
Security (SOUPS 2018). 395–409.

https://books.google.com/books?id=5F-YNZRv-VMC&pg=PA595
https://books.google.com/books?id=5F-YNZRv-VMC&pg=PA595
https://duckduckgo.com/privacy
https://duckduckgo.com/about
https://blog.cryptographyengineering.com/2020/07/10/a-few-thoughts-about-signals-secure-value-recovery/
https://blog.cryptographyengineering.com/2020/07/10/a-few-thoughts-about-signals-secure-value-recovery/
https://matrix.org/blog/2022/03/25/interoperability-without-sacrificing-privacy-matrix-and-the-dma
https://matrix.org/blog/2022/03/25/interoperability-without-sacrificing-privacy-matrix-and-the-dma
https://www.wired.com/story/whatsapp-privacy-policy-facebook-data-sharing/
https://www.wired.com/story/whatsapp-privacy-policy-facebook-data-sharing/
https://www.eff.org/deeplinks/2014/04/warrant-canary-faq
https://www.eff.org/deeplinks/2014/04/warrant-canary-faq
https://www.computerworld.com/article/2571336/aol-adds-encryption-to-its-corporate-im.html
https://www.computerworld.com/article/2571336/aol-adds-encryption-to-its-corporate-im.html
https://www.newamerica.org/oti/blog/we-dont-have-to-sacrifice-encryption-to-achieve-messaging-interoperability/
https://www.newamerica.org/oti/blog/we-dont-have-to-sacrifice-encryption-to-achieve-messaging-interoperability/
https://www.theguardian.com/technology/2017/jul/09/everybody-lies-how-google-reveals-darkest-secrets-seth-stephens-davidowitz
https://www.theguardian.com/technology/2017/jul/09/everybody-lies-how-google-reveals-darkest-secrets-seth-stephens-davidowitz
https://www.theguardian.com/technology/2017/jul/09/everybody-lies-how-google-reveals-darkest-secrets-seth-stephens-davidowitz
https://gregoryszorc.com/blog/2018/06/20/deterministic-firefox-builds
https://gregoryszorc.com/blog/2018/06/20/deterministic-firefox-builds
https://faq.whatsapp.com/791574747982248/
https://faq.whatsapp.com/791574747982248/

	Abstract
	1 Introduction
	1.1 Relation to prior work
	1.2 Summary of contributions

	2 Cryptography and trust
	2.1 Cryptographic assumptions
	2.2 Models of trust
	2.3 Cryptography in practice: from specification to implementation and deployment

	3 Two case studies
	3.1 Web search
	3.2 Instant messaging
	3.3 Lessons

	4 Paths forward
	4.1 Technical and organizational safeguards
	4.2 Legal safeguards
	4.3 Discussion

	5 Conclusion
	References

